20.正整數(shù)按如表的規(guī)律排列,則上起第20行,左起第21列的數(shù)應為420.

分析 由給出排列規(guī)律可知,第一列的每個數(shù)為所該數(shù)所在行數(shù)的平方,而第一行的數(shù)則滿足列數(shù)減1的平方再加1.由此能求出上起第20行,左起第21列的數(shù)

解答 解:由給出排列規(guī)律可知,
第一列的每個數(shù)為所該數(shù)所在行數(shù)的平方,
而第一行的數(shù)則滿足列數(shù)減1的平方再加1.
依題意有,左起第21列的第一個數(shù)為202+1,
故按連線規(guī)律可知,
上起第20行,左起第21列的數(shù)應為202+20=20×20=420.
故答案為:420

點評 本題考查數(shù)列的性質和應用,解題時要認真審題,仔細解答.其中分析出數(shù)的排列規(guī)律是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=x2-(2a+1)x+a2-6,當f(x)<0時解集為(-5,-2),則實數(shù)a=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在四面體ABCD中,截面PQMN是正方形,求證:
(1)AC∥截面PQMN;
(2)AC⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.現(xiàn)從A,B,C,D,E五人中選取三人參加一個重要會議,五人被選中的機會相等,則A和B同時被選中的概率是$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,若a=2,A=30°,B=45°,則邊b的大小為( 。
A.$2\sqrt{2}$B.2C.$\sqrt{6}+\sqrt{2}$D.$\sqrt{6}+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,四棱錐P-ABCD中,側面PDC是面積為$\sqrt{3}$的正三角形,且與底面ABCD垂直,底面ABCD是面積為$2\sqrt{3}$的菱形,∠ADC為銳角.
(1)求四棱錐P-ABCD的體積;
(2)求證:PA⊥CD;
(3)求二面角P-AB-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某班學生在一次月考中數(shù)學不及格的占16%,語文不及格的占7%,兩門都不及格的占4%,已知該班某學生在月考中語文不及格,則該學生在月考中數(shù)學不及格的概率是(  )
A.$\frac{1}{4}$B.$\frac{7}{16}$C.$\frac{4}{7}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若雙曲線$\frac{x^2}{9}$-$\frac{y^2}{m}$=1的離心率為$\frac{{\sqrt{14}}}{3}$,則雙曲線焦點F到漸近線的距離為( 。
A.2B.$\sqrt{14}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.一貨輪航行到M處,測得燈塔S在貨輪的北偏東15°方向上,與燈塔S相距20nmile,隨后貨輪按北偏西30°的方向航行3h后,又測得燈塔在貨輪的東北方向,則貨輪的速度為( 。
A.$\frac{10(\sqrt{6}+\sqrt{2})}{3}$nmile/hB.$\frac{10(\sqrt{6}-\sqrt{2})}{3}$nmile/hC.$\frac{10(\sqrt{6}+\sqrt{3})}{3}$nmile/hD.$\frac{10(\sqrt{6}-\sqrt{3})}{3}$nmile/h

查看答案和解析>>

同步練習冊答案