【題目】已知直線l的方程為x=﹣2,且直線lx軸交于點M,圓O:x軸交于A,B兩點如圖).

(1)M點的直線l1交圓于P、Q兩點,且O點到直線l1的距離為,求直線l1的方程;

(2)求以l為準(zhǔn)線,中心在原點,且短軸長為圓O的半徑的橢圓方程;

(3)M點的圓的切線l2,(2)中的一個橢圓于C、D兩點,其中C、D兩點在x軸上方,求線段CD的長

【答案】(1);(2);(3)

【解析】

(1)可設(shè)直線l1的方程為ykx+2),由點到直線的距離公式可得k的方程,解方程可得;

(2)設(shè)橢圓的方程為1(ab>0),易得a=1或b=1,分別可得ba值,可得方程;

(3)可設(shè)直線l2的方程為yx+2)和橢圓聯(lián)立可得5x2+8x+2=0,由弦長公式可得.

(1)∵點到直線的距離為.

設(shè)的方程為,∴,∴.

的方程為.

(2)設(shè)橢圓方程為,半焦距為,.

,∴.∴所求橢圓方程為.

(3)設(shè)切點為則由題意得,橢圓方程為,

,,

的方程為代入橢圓,整理得.

設(shè),,.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,是棱的中點,是側(cè)面內(nèi)的動點,且平面,則與平面所成角的正切值構(gòu)成的集合是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxgx)分別是定義在R上的偶函數(shù)和奇函數(shù),且fx+gx=23x

1)證明:fx-gx=23-x,并求函數(shù)fx),gx)的解析式;

2)解關(guān)于x不等式:gx2+2x+gx-4)>0;

3)若對任意xR,不等式f2x)≥mfx-4恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70

1)畫出散點圖;

2)求y關(guān)于x的線性回歸方程.

3)如果廣告費支出為一千萬元,預(yù)測銷售額大約為多少百萬元?

參考公式用最小二乘法求線性回歸方程系數(shù)公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

1)將表示為的函數(shù),求出該函數(shù)表達式;

2)根據(jù)直方圖估計利潤不少于57萬元的概率;

3)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點后一位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對下列命題:

①直線與函數(shù)的圖象相交,則相鄰兩交點的距離為;

②點 是函數(shù)的圖象的一個對稱中心;

③函數(shù)上單調(diào)遞減,則的取值范圍為;

④函數(shù)R恒成立,則.

其中所有正確命題的序號為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在唯一的,使成立,則該函數(shù)為“依附函數(shù)”.

(1)判斷函數(shù)是否為“依附函數(shù)”,并說明理由;

(2)若函數(shù)在定義域上“依附函數(shù)”,求的取值范圍;

(3)已知函數(shù)在定義域上為“依附函數(shù)”.若存在實數(shù),使得對任意的,不等式都成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的焦點是橢圓 )的頂點,且橢圓與雙曲線的離心率互為倒數(shù).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)動點, 在橢圓上,且,記直線軸上的截距為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某多面體的三視圖如圖所示,則該多面體的各棱中,最長棱的長度為( )

A. B. C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊答案