【題目】已知直線l的方程為x=﹣2,且直線l與x軸交于點M,圓O:與x軸交于A,B兩點(如圖).
(1)過M點的直線l1交圓于P、Q兩點,且O點到直線l1的距離為,求直線l1的方程;
(2)求以l為準(zhǔn)線,中心在原點,且短軸長為圓O的半徑的橢圓方程;
(3)過M點的圓的切線l2,交(2)中的一個橢圓于C、D兩點,其中C、D兩點在x軸上方,求線段CD的長.
【答案】(1);(2);(3)
【解析】
(1)可設(shè)直線l1的方程為y=k(x+2),由點到直線的距離公式可得k的方程,解方程可得;
(2)設(shè)橢圓的方程為1(a>b>0),易得a=1或b=1,分別可得b和a值,可得方程;
(3)可設(shè)直線l2的方程為y(x+2)和橢圓聯(lián)立可得5x2+8x+2=0,由弦長公式可得.
(1)∵點到直線的距離為.
設(shè)的方程為,∴,∴.
∴的方程為.
(2)設(shè)橢圓方程為,半焦距為,則.
,,∴.∴所求橢圓方程為.
(3)設(shè)切點為,則由題意得,橢圓方程為,
在中,,,則,
∴的方程為,代入橢圓中,整理得.
設(shè),,則,.
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,是棱的中點,是側(cè)面內(nèi)的動點,且平面,則與平面所成角的正切值構(gòu)成的集合是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=23x.
(1)證明:f(x)-g(x)=23-x,并求函數(shù)f(x),g(x)的解析式;
(2)解關(guān)于x不等式:g(x2+2x)+g(x-4)>0;
(3)若對任意x∈R,不等式f(2x)≥mf(x)-4恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求y關(guān)于x的線性回歸方程.
(3)如果廣告費支出為一千萬元,預(yù)測銷售額大約為多少百萬元?
參考公式用最小二乘法求線性回歸方程系數(shù)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(1)將表示為的函數(shù),求出該函數(shù)表達式;
(2)根據(jù)直方圖估計利潤不少于57萬元的概率;
(3)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點后一位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對下列命題:
①直線與函數(shù)的圖象相交,則相鄰兩交點的距離為;
②點 是函數(shù)的圖象的一個對稱中心;
③函數(shù)在上單調(diào)遞減,則的取值范圍為;
④函數(shù)若對R恒成立,則.
其中所有正確命題的序號為____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)對定義域內(nèi)的每一個值,在其定義域內(nèi)都存在唯一的,使成立,則該函數(shù)為“依附函數(shù)”.
(1)判斷函數(shù)是否為“依附函數(shù)”,并說明理由;
(2)若函數(shù)在定義域上“依附函數(shù)”,求的取值范圍;
(3)已知函數(shù)在定義域上為“依附函數(shù)”.若存在實數(shù),使得對任意的,不等式都成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的焦點是橢圓: ()的頂點,且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)動點, 在橢圓上,且,記直線在軸上的截距為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com