【題目】某多面體的三視圖如圖所示,則該多面體的各棱中,最長棱的長度為( )
A. B. C. 2 D. 1
【答案】A
【解析】由三視圖可知該多面體的直觀圖為如圖所示的四棱錐:
其中,四邊形為邊長為1的正方形,面,且,.
∴,,
∴,,
∴
∴最長棱為
故選A.
點(diǎn)睛: 思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:①首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;②觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;③畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的方程為x=﹣2,且直線l與x軸交于點(diǎn)M,圓O:與x軸交于A,B兩點(diǎn)(如圖).
(1)過M點(diǎn)的直線l1交圓于P、Q兩點(diǎn),且O點(diǎn)到直線l1的距離為,求直線l1的方程;
(2)求以l為準(zhǔn)線,中心在原點(diǎn),且短軸長為圓O的半徑的橢圓方程;
(3)過M點(diǎn)的圓的切線l2,交(2)中的一個橢圓于C、D兩點(diǎn),其中C、D兩點(diǎn)在x軸上方,求線段CD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從全校參加數(shù)學(xué)競賽的學(xué)生的試卷中抽取一個樣本,考察競賽的成績分布,將樣本分成5組,繪制成頻率分布直方圖,圖中從左到右各組的小長方形的高之比為1∶3∶6∶4∶2,最右邊一組的頻數(shù)是6,請結(jié)合直方圖提供的信息,解答下列問題:
(1)樣本的容量是多少?
(2)列出頻率分布表.
(3)成績落在哪一組內(nèi)的人數(shù)最多?并求出該組的頻數(shù)、頻率.
(4)估計這次競賽中,成績不低于60分的學(xué)生人數(shù)占總?cè)藬?shù)的百分比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4個男同學(xué),3個女同學(xué)站成一排.
(1)3個女同學(xué)必須排在一起,有多少種不同的排法?
(2)任何兩個女同學(xué)彼此不相鄰,有多少種不同的排法?
(3)甲、乙兩人相鄰,但都不與丙相鄰,有多少種不同的排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的圖象關(guān)于原點(diǎn)對稱,其中a為常數(shù).
(1)求a的值,并寫出函數(shù)f(x)的單調(diào)區(qū)間(不需要求解過程);
(2)若關(guān)于x的方程在[2,3]上有解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且數(shù)列{Sn}是以2為公比的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a1+a3+…+a2n+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在直角坐標(biāo)系中,的圓心角為,所在圓的半徑為1,角θ的終邊與交于點(diǎn)C.
(1)當(dāng)C為的中點(diǎn)時,D為線段OA上任一點(diǎn),求的最小值;
(2)當(dāng)C在上運(yùn)動時,D,E分別為線段OA,OB的中點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若a是從1,2,3三個數(shù)中任取一個,b是從2,3,4,5四個數(shù)中任取一個,那么恒成立的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,焦距為2,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值;
(3)在(2)的條件下,當(dāng)時,設(shè)的面積為(O是坐標(biāo)原點(diǎn),Q是曲線C上橫坐標(biāo)為a的點(diǎn)),以為邊長的正方形的面積為,若正數(shù)滿足,問是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com