【題目】若函數(shù)對(duì)定義域內(nèi)的每一個(gè)值,在其定義域內(nèi)都存在唯一的,使成立,則該函數(shù)為“依附函數(shù)”.

(1)判斷函數(shù)是否為“依附函數(shù)”,并說(shuō)明理由;

(2)若函數(shù)在定義域上“依附函數(shù)”,求的取值范圍;

(3)已知函數(shù)在定義域上為“依附函數(shù)”.若存在實(shí)數(shù),使得對(duì)任意的,不等式都成立,求實(shí)數(shù)的最大值.

【答案】(1)不是,理由見(jiàn)解析;(2);(3).

【解析】

1)舉出反例:取,但是不存在,即可判定;

2)根據(jù)依附函數(shù)的關(guān)系,結(jié)合遞增,故,即,,即可求得取值范圍;

3)根據(jù)依附函數(shù)的關(guān)系結(jié)合單調(diào)性分析可得,將問(wèn)題轉(zhuǎn)化為存在,使得對(duì)任意的,有不等式都成立,即關(guān)于t的不等式恒成立,即可求解.

(1)對(duì)于函數(shù)的定義域內(nèi)存在,則,無(wú)解.

不是“依附函數(shù)”;

(2)因?yàn)?/span>遞增,故,

,,

,故,得,

從而上單調(diào)遞增,故,

(3)①若,故上最小值為0,此時(shí)不存在,舍去;

②若上單調(diào)遞減,從而

解得(舍)或.從而,存在,使得對(duì)任意的,

有不等式都成立,

恒成立,

,得

,可得

單調(diào)遞減,

故當(dāng)時(shí),

從而,解得,

綜上,故實(shí)數(shù)的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線1(a0b0)的右焦點(diǎn)為F(c,0)

(1)若雙曲線的一條漸近線方程為yxc2,求雙曲線的方程;

(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過(guò)A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處的切線斜率為.

(1)若函數(shù)上單調(diào),求實(shí)數(shù)的最大值;

(2)當(dāng)時(shí),若存在不等的使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的方程為x=﹣2,且直線lx軸交于點(diǎn)M,圓O:x軸交于A,B兩點(diǎn)如圖).

(1)過(guò)M點(diǎn)的直線l1交圓于P、Q兩點(diǎn),且O點(diǎn)到直線l1的距離為求直線l1的方程;

(2)求以l為準(zhǔn)線,中心在原點(diǎn),且短軸長(zhǎng)為圓O的半徑的橢圓方程

(3)過(guò)M點(diǎn)的圓的切線l2,(2)中的一個(gè)橢圓于C、D兩點(diǎn),其中C、D兩點(diǎn)在x軸上方,求線段CD的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)的圖象向左平移1個(gè)單位后關(guān)于y軸對(duì)稱,當(dāng)x2x11時(shí),[fx2)﹣fx1]x2x1)<0恒成立,設(shè)af),bf2),cf3),則a、b、c的大小關(guān)系為( 。

A.cabB.cbaC.acbD.bac

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1),證明:當(dāng);

(2)設(shè),若函數(shù)上有2個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為奇函數(shù),,其中.

1)若函數(shù)的圖像過(guò)點(diǎn),求實(shí)數(shù)的值;

2)若,試判斷函數(shù)上的單調(diào)性并證明;

3)設(shè)函數(shù),若對(duì)每一個(gè)不小于3的實(shí)數(shù),都恰有一個(gè)小于3的實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從全校參加數(shù)學(xué)競(jìng)賽的學(xué)生的試卷中抽取一個(gè)樣本,考察競(jìng)賽的成績(jī)分布,將樣本分成5組,繪制成頻率分布直方圖,圖中從左到右各組的小長(zhǎng)方形的高之比為13642,最右邊一組的頻數(shù)是6,請(qǐng)結(jié)合直方圖提供的信息,解答下列問(wèn)題:

1)樣本的容量是多少?

2)列出頻率分布表.

3)成績(jī)落在哪一組內(nèi)的人數(shù)最多?并求出該組的頻數(shù)、頻率.

4)估計(jì)這次競(jìng)賽中,成績(jī)不低于60分的學(xué)生人數(shù)占總?cè)藬?shù)的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在直角坐標(biāo)系中,的圓心角為,所在圓的半徑為1,角θ的終邊與交于點(diǎn)C.


1)當(dāng)C的中點(diǎn)時(shí),D為線段OA上任一點(diǎn),求的最小值;

2)當(dāng)C上運(yùn)動(dòng)時(shí),D,E分別為線段OA,OB的中點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案