已知函數(shù)f(x)=
x
2x-1
,證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù).
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過求導(dǎo)得出導(dǎo)函數(shù)小于0,從而證出函數(shù)的單調(diào)性.
解答: 證明:設(shè)1<x1<x2,
∴f(x1)-f(x2)=
x1
2x1-1
-
x2
2x2-1
=
x2-x1
(2x1-1)(2x2-1)
>0,
∴f(x1)>f(x2),
∴函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù).
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性問題,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“φ=0”是“函數(shù)f(x)=sin(x+φ)為奇函數(shù)”的
 
條件.(從“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中選擇適當(dāng)?shù)奶顚懀?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,且ex+1≥ax+b對(duì)x∈R恒成立,則ab的最大值是(  )
A、
1
2
e3
B、
2
2
e3
C、
3
2
e3
D、e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|ax2+bx+1=0,a∈R,b∈R},求:
(1)當(dāng)b=2時(shí),A中至多只有一個(gè)元素,求a的取值范圍;
(2)當(dāng)b=-2時(shí),A中至少有一個(gè)元素,求a的取值范圍;
(3)當(dāng)a、b滿足什么條件時(shí),集合A為非空集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下命題:
①被3除余2的數(shù)組成一個(gè)集合         
②|x-1|+|x+2|<3的解集為∅
{(x,y)|
y+1
x-1
=1}
={(x,y)|y=x-2}
④任何一個(gè)集合至少有兩個(gè)子集
其中正確命題的序號(hào)是
 
(把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物y=x2-2mx-(m2+2m+1)
(1)求證:不論m取何值,拋物線必與x軸交于兩點(diǎn);
(2)若函數(shù)的定義域?yàn)閧x|-1≤x≤1},求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)23+log25;
(2)lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-2x(x∈[0,4]),則f(x)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果二次函數(shù)y=x2+mx+n有兩個(gè)不同的零點(diǎn)-2和4,則m、n的值是( 。
A、m=2,n=8
B、m=2,n=-8
C、m=-2,n=8
D、m=-2,n=-8

查看答案和解析>>

同步練習(xí)冊(cè)答案