<pre id="o7osh"></pre>
  • 已知拋物y=x2-2mx-(m2+2m+1)
    (1)求證:不論m取何值,拋物線必與x軸交于兩點(diǎn);
    (2)若函數(shù)的定義域?yàn)閧x|-1≤x≤1},求函數(shù)的值域.
    考點(diǎn):函數(shù)的零點(diǎn),函數(shù)的值域
    專題:計(jì)算題,證明題,分類討論,函數(shù)的性質(zhì)及應(yīng)用
    分析:(1)由判別式化簡(jiǎn)配方,即可得證;
    (2)求出對(duì)稱軸x=m,討論當(dāng)m≤-1時(shí),當(dāng)m≥1時(shí),當(dāng)-1<m<0時(shí),當(dāng)0≤m<1,區(qū)間和對(duì)稱軸的關(guān)系,即可得到值域.
    解答: (1)證明:由于y=x2-2mx-(m2+2m+1),
    則判別式△=4m2+4(m2+2m+1)=4(2m2+2m+1)
    =8(m+
    1
    2
    2+2>0,
    則不論m取何值,拋物線必與x軸交于兩點(diǎn);
    (2)解:函數(shù)f(x)的定義域?yàn)閧x|-1≤x≤1},
    對(duì)稱軸x=m,
    當(dāng)m≤-1時(shí),[-1,1]在對(duì)稱軸的右邊,為增區(qū)間,
    則函數(shù)的值域?yàn)閇f(-1),f(1)]即有[-m2,-m2-4m];
    當(dāng)-1<m<1時(shí),f(m)最小,且為-2m2-2m-1,
    若m=0則f(-1)=f(1)=0,則值域?yàn)閇-1,0];
    若0<m<1,則f(-1)>f(1),則值域?yàn)閇-2m2-2m-1,-m2];
    若-1<m<0時(shí),則f(-1)<f(1),則值域?yàn)閇-2m2-2m-1,-m2-4m];
    當(dāng)m≥1時(shí),[-1,1]在對(duì)稱軸的左邊,為減區(qū)間,
    則函數(shù)的值域?yàn)閇f(1),f(-1)]即有[-m2-4m,-m2].
    綜上,當(dāng)m≤-1時(shí),值域?yàn)閇-m2,-m2-4m];
    當(dāng)0≤m<1,值域?yàn)閇-2m2-2m-1,-m2];
    當(dāng)-1<m<0時(shí),值域?yàn)閇-2m2-2m-1,-m2-4m];
    當(dāng)m≥1時(shí)值域?yàn)閇-m2-4m,-m2].
    點(diǎn)評(píng):本題考查函數(shù)的值域,考查二次函數(shù)在閉區(qū)間上的值域,注意討論對(duì)稱軸和區(qū)間的關(guān)系,考查運(yùn)算能力,屬于中檔題.
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    對(duì)某電子元件進(jìn)行使用壽命追蹤調(diào)查,情況如下,試估計(jì)該電子元件使用壽命的平均值.
    壽命(h)[100,200)[200,300)[300,400)[400,500)[500,600)
    個(gè)數(shù)2030804030

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    化簡(jiǎn):2 log23=
     
    ,2 1+log23=
     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=-x2+2bx+c,設(shè)函數(shù)g(x)=|f(x)|在區(qū)間[-1,1]上的最大值為M.
    (Ⅰ)若b=2,試求出M;
    (Ⅱ)若M≥k對(duì)任意的b、c恒成立,試求k的最大值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=
    x
    2x-1
    ,證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù).

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    定義在R上的偶函數(shù)f(x)滿足:對(duì)任意x1,x2∈(-∞,0](x1≠x2),都有
    x2-x1
    f(x2)-f(x1)
    >0則( 。
    A、f(-5)<f(4)<f(6)
    B、f(4)<f(-5)<f(6)
    C、f(6)<f(-5)<f(4)
    D、f(6)<f(4)<f(-5)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+2)=f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x,若方程ax-a-f(x)=0(a>0)恰有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
    A、(
    1
    2
    ,1)
    B、[0,2]
    C、(1,2)
    D、[1,+∞)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知非空集合P、Q,定義P-Q={x|x∈P,但x∉Q},則P-(P-Q)等于( 。
    A、PB、QC、P∩QD、P∪Q

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=-x+
    1
    x

    (1)判斷并證明函數(shù)f(x)的奇偶性;
    (2)用定義法證明函數(shù)f(x)在(0,∞)是減函數(shù);
    (3)若f(32a+1)<f((
    1
    3
    4-a),求實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案