15.點(diǎn)P(1,2)到直線y=-1的距離為3.

分析 直接利用點(diǎn)到直線的距離公式即可求出答案.

解答 解:點(diǎn)P(1,2)到直線y+1=0的距離d=$\frac{|2+1|}{\sqrt{1}}=3$.
故答案為:3.

點(diǎn)評(píng) 本題考查了點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}為等差數(shù)列,若an=a,an=b(n-m≥1,m,n∈N*),則am+n=$\frac{nb-ma}{n-m}$.
(1)類比上述結(jié)論,對(duì)于等比數(shù)列{bn}(bn>0,n∈N*),若bm=c,bn=d(n-m≥2,m,n∈N*),猜想數(shù)列{bm+n}的通項(xiàng)公式;
(2)證明(1)中的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a為實(shí)數(shù),若復(fù)數(shù)z=a2-3a-4+(a-4)i為純虛數(shù),則復(fù)數(shù)a-ai在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,AB是圓O的直徑,點(diǎn)C在圓O上,矩形DCBE所在的平面垂直于圓O所在的平面,AB=4,BE=1.
(1)證明:平面ADE⊥平面ACD;
(2)若∠ABC=30°,求點(diǎn)B到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,當(dāng)x2>x1>1時(shí),[f(x2)-f(x1)](x2-x1)<0恒成立,設(shè)a=f(-$\frac{1}{2}$),b=f(2),c=f(e),則a,b,c的大小關(guān)系為( 。
A.c>a>bB.c>b>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在正方體ABCD-A1B1C1D中,異面直線A1D與D1C所成的角為60度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知在△ABC中,a=x,b=2,A=60°,若三角形有兩解,則x的取值范圍是($\sqrt{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$cos(π-α)=\frac{4}{5}$,且α為第三象限角,則tan2α的值等于( 。
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{24}{7}$D.-$\frac{24}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2且f(x1)=x1,則關(guān)于x的方程3[(f(x)]2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)為( 。
A.2B.3C.4D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案