已知方向向量為的直線l過(guò)點(diǎn)和橢圓的右焦點(diǎn),且橢圓的離心率為
(1)求橢圓C的方程:
(2)若已知點(diǎn)M,N是橢圓C上不重合的兩點(diǎn),點(diǎn)D(3,0)滿足,求實(shí)數(shù)λ的取值范圍.
【答案】分析:(1)先利用條件求出直線l的方程,找出橢圓的右焦點(diǎn)坐標(biāo),再利用橢圓的離心率為,就可求出橢圓C的方程:
(2)把直線MN的方程與橢圓方程聯(lián)立找到關(guān)于點(diǎn)M,N縱坐標(biāo)的方程,再利用所給出的點(diǎn)M,N縱坐標(biāo)之間的關(guān)系,二者聯(lián)立借助與判別式大于0就可求實(shí)數(shù)λ的取值范圍.
解答:解:(1)因?yàn)橹本l的方向向量為所以直線斜率為k=,
又因?yàn)橹本過(guò)點(diǎn)
所以直線方程為y+2=x
因?yàn)閍>b,所以橢圓的右焦點(diǎn)為直線與軸的交點(diǎn),∴橢圓的右焦點(diǎn)為(2,0),所以c=2
∵e==,∴a=,∴b2=a2-c2=2
∴橢圓方程為+=1
(2)由已知設(shè)直線MN的方程為x=my+3,
⇒(m2+3)y2+6my+3=0,設(shè)M.N坐標(biāo)分別為(x1,y1)(x2,y2
則y1+y2=-   ①y1y2=     ②
△=36m2-12(m2+3)>0⇒m2
=(x1-3,y1),=(x2-3,y2),,顯然λ>0且λ≠1
∴(x1-3,y1)=λ(x2-3,y2)∴y1=λy2,
代入①②得  =-2=10-,
∵m2⇒2<<10⇒
解得5-2<λ<5+2且λ≠1
點(diǎn)評(píng):本題綜合考查了直線與橢圓的位置關(guān)系以及向量共線問(wèn)題.還涉及到直線的方程與斜率,考查運(yùn)算能力與思維能力、綜合分析問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年福建卷)(12分)

已知方向向量為的直線l過(guò)點(diǎn)(0,-2)和橢圓C:的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)是否存在過(guò)點(diǎn)E(-2,0)的直線m交橢圓C于點(diǎn)M、N,滿足

cot∠MON≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

22.

已知方向向量為的直線l過(guò)點(diǎn)()和橢圓的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)是否存在過(guò)點(diǎn)E(-2,0)的直線m交橢圓C于點(diǎn)M、N,滿足=,cot∠MON≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方向向量為的直線過(guò)橢圓C:=1(a>b>0)的焦點(diǎn)以及點(diǎn)(0,),橢圓C的中心關(guān)于直線的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上。

⑴求橢圓C的方程。

⑵過(guò)點(diǎn)E(-2,0)的直線交橢圓C于點(diǎn)M、N,且滿足,(O為坐標(biāo)原點(diǎn)),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省高三上學(xué)期2月月考理科數(shù)學(xué)試卷 題型:解答題

已知方向向量為的直線l過(guò)橢圓的焦點(diǎn)以及點(diǎn)(0,),直線l與橢圓C交于 A 、B兩點(diǎn),且A、B兩點(diǎn)與另一焦點(diǎn)圍成的三角形周長(zhǎng)為

(1)求橢圓C的方程

(2)過(guò)左焦點(diǎn)且不與x軸垂直的直線m交橢圓于M、N兩點(diǎn),(O坐標(biāo)原點(diǎn)),求直線m的方程

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方向向量為的直線點(diǎn)和橢圓的焦點(diǎn),且橢圓C的中心關(guān)于直線的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上。

       (1)求橢圓C的方程

       (2)是否存在過(guò)點(diǎn)的直線交橢圓C于點(diǎn)M,N且滿足

       (O為原點(diǎn)),若存在求出直線的方程,若不存在說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案