14.已知方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示的曲線為C,給出以下四個判斷:
①當1<t<4時,曲線C表示橢圓;
②當t>4或t<1時曲線C表示雙曲線;
③若曲線C表示焦點在x軸上的橢圓,則1<t<$\frac{5}{2}$;
④若曲線C表示焦點在x軸上的雙曲線,則t>4,
其中判斷正確的個數(shù)是( 。
A.1B.2C.3D.4

分析 利用橢圓、雙曲線的定義,結(jié)合標準方程,即可得出結(jié)論.

解答 解:由4-t=t-1,可得t=$\frac{5}{2}$,方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示圓,故①不正確;
由雙曲線的定義可知:當(4-t)(t-1)<0時,即t<1或t>4時方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1示雙曲線,故②正確;
由橢圓定義可知:當橢圓在x軸上時,滿足4-t>t-1>0,即1<t<$\frac{5}{2}$時方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示焦點在x軸上的橢圓,故③正確.
若曲線C表示焦點在x軸上的雙曲線,則$\left\{\begin{array}{l}{4-t>0}\\{t-1<0}\end{array}\right.$,∴t<1,故④不正確,
故選:B.

點評 本題考查了圓錐曲線的標準方程,尤其要注意橢圓在x軸和y軸上兩種情況,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C的對邊分別為a,b,c,A=60°,a=3.
(1)若b=2,求cosB;
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.矩陣M=$(\begin{array}{l}{tanα}&{si{n}^{2}α}\\{co{s}^{2}α}&{cotα}\end{array})$,則a11•a22-a12-a21=1-$\frac{1}{4}si{n}^{2}2α$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,則實數(shù)a的值為( 。
A.2或-1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C的對邊是a,b,c,已知2b-c=2acosC.
(Ⅰ)求A;
(Ⅱ)若4(b+c)=3bc,a=2$\sqrt{3}$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合M={x|x+1>0},N={x|2x-1<0},則M∩N=( 。
A.(-3,$\frac{1}{2}$)B.(-3,-$\frac{1}{2}$)C.(-1,$\frac{1}{2}$)D.($\frac{1}{2}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=x3+sinx,x∈(-1,1),則滿足f(a2-1)+f(a-1)>0的a的取值范圍是( 。
A.(0,2)B.(1,$\sqrt{2}$)C.(1,2)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=($\frac{1}{2}$)x,g(x)=log${\;}_{\frac{1}{2}}$x,記函數(shù)h(x)=$\left\{\begin{array}{l}{f(x),f(x)≤g(x)}\\{g(x),f(x)>g(x)}\end{array}\right.$,則不等式h(x)≥$\frac{1}{2}$的解集為(0,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知0<x<$\frac{5}{4}$,則x(5-4x)的最大值是$\frac{25}{16}$.

查看答案和解析>>

同步練習(xí)冊答案