3.已知函數(shù)f(x)=($\frac{1}{2}$)x,g(x)=log${\;}_{\frac{1}{2}}$x,記函數(shù)h(x)=$\left\{\begin{array}{l}{f(x),f(x)≤g(x)}\\{g(x),f(x)>g(x)}\end{array}\right.$,則不等式h(x)≥$\frac{1}{2}$的解集為(0,$\frac{\sqrt{2}}{2}$].

分析 確定f(x)與g(x)的圖象交點(diǎn)的橫坐標(biāo)的范圍,作出函數(shù)h(x)的圖象,即可得到結(jié)論.

解答 解:記f(x)與g(x)的圖象交點(diǎn)的橫坐標(biāo)為x=x0,
∴f($\frac{1}{2}$)=$\frac{\sqrt{2}}{2}$<1=log${\;}_{\frac{1}{2}}$$\frac{1}{2}$=g($\frac{1}{2}$),
∴x0∈($\frac{1}{2}$,1).
由于f(x)與g(x)均為減函數(shù),
∴h(x)為減函數(shù),
∵h(yuǎn)(x)≥$\frac{1}{2}$,
∴$\frac{1}{2}$x≥$\frac{1}{2}$=($\frac{1}{2}$)1
∴x<1,
∵log${\;}_{\frac{1}{2}}$x≥$\frac{1}{2}$=$\frac{1}{2}$log${\;}_{\frac{1}{2}}$$\frac{1}{2}$=log${\;}_{\frac{1}{2}}$$\frac{\sqrt{2}}{2}$,
∴0<x≤$\frac{\sqrt{2}}{2}$,
綜上所述不等式的解集為(0,$\frac{\sqrt{2}}{2}$],
故答案為:(0,$\frac{\sqrt{2}}{2}$]

點(diǎn)評(píng) 本題考查新定義,考查不等式的解法,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四個(gè)命題中,正確的是( 。
A.若$\lim_{n→∞}a_n^2={A^2}$,則$\underset{lim}{n→∞}$an=AB.若an>0,$\lim_{n→∞}{a_n}=A$,則A>0
C.若$\lim_{n→∞}{a_n}=A$,則$\lim_{n→∞}a_n^2={A^2}$D.若$\underset{lim}{n→∞}$an=A,則$\lim_{n→∞}na_n^{\;}=n{A^{\;}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示的曲線為C,給出以下四個(gè)判斷:
①當(dāng)1<t<4時(shí),曲線C表示橢圓;
②當(dāng)t>4或t<1時(shí)曲線C表示雙曲線;
③若曲線C表示焦點(diǎn)在x軸上的橢圓,則1<t<$\frac{5}{2}$;
④若曲線C表示焦點(diǎn)在x軸上的雙曲線,則t>4,
其中判斷正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知定義域?yàn)镽的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x+1}+2}$的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求b的值;
(2)判斷f(x)的單調(diào)性,并證明;
(3)若a∈[-1,1],t∈[-1,1]時(shí),不等式f(at2-2t)+f(-2t2-k+a)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=x2+2x-3,x∈[-2,1],函數(shù)f(x)的值域?yàn)閇-4,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x{\;}^{2}-x,x≤1}\\{x-3,x>1}\end{array}\right.$.
(1)在下面的坐標(biāo)系中,作出函數(shù)f(x)的圖象并寫出單調(diào)區(qū)間;
(2)若f(a)=2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某公園有一個(gè)直角三角形地塊,現(xiàn)計(jì)劃把它改造成一塊矩形和兩塊三角形區(qū)域.如圖,矩形區(qū)域用于娛樂城設(shè)施的建設(shè),三角形BCD區(qū)域用于種植甲種觀賞花卉,三角形CAE區(qū)域用于種植乙種觀賞花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲種花卉每平方千米造價(jià)1萬元,乙種花卉每平方千米造價(jià)4萬元,設(shè)OE=x千米.試建立種植花卉的總造價(jià)為y(單位:萬元)關(guān)于x的函數(shù)關(guān)系式;求x為何值時(shí),種植花卉的總造價(jià)最小,并求出總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)z滿足z=$\frac{1+i}{i}$+3i,則|z|=( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=f(x)的圖象與直線x=1的交點(diǎn)有幾個(gè)( 。
A.1B.0C.0或1D.0或2

查看答案和解析>>

同步練習(xí)冊(cè)答案