等比數(shù)列{an}中,a4=2,a5=5,則數(shù)列{lgan}的前8項(xiàng)和等于
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由等比數(shù)列的性質(zhì)可得a1•a8=a2•a7=…a4•a5=10,由對數(shù)的運(yùn)算性質(zhì),整體代入計(jì)算可得.
解答: 解:∵等比數(shù)列{an}中a4=2,a5=5,
∴a4•a5=2×5=10,
∴數(shù)列{lgan}的前8項(xiàng)和S=lga1+lga2+…+lga8
=lg(a1•a2…a8)=lg(a4•a54
=4lg(a4•a5)=4lg10=4
故答案為:4.
點(diǎn)評(píng):本題考查等比數(shù)列的性質(zhì),涉及對數(shù)的運(yùn)算,基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,與AC平行,且過正方體三個(gè)頂點(diǎn)的截面是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱柱ABCD-A1B1C1D1的各頂點(diǎn)都在半徑為R的球面上,則正四棱柱的側(cè)面積有最
 
值,為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項(xiàng)公式為an=2n+2n-1,則數(shù)列an的前n項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列的前n項(xiàng)和為Sn,且a1=1,an+1=3Sn,第k項(xiàng)滿足750<ak<900,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4個(gè)應(yīng)屆畢業(yè)生到某公司應(yīng)聘,現(xiàn)有A,B兩套面試問題供應(yīng)聘者選擇,已知每個(gè)人隨機(jī)地選擇A,B兩套面試問題.求這四個(gè)應(yīng)聘者中選擇A套面試問題的人數(shù)大于選擇B套面試問題的人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,并且a2=2,S5=15,數(shù)列{bn}滿足:b1=
1
2
,bn+1=
n+1
2n
bn(n∈N+),記數(shù)列{bn}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和公式Sn;
(2)求數(shù)列{bn}的通項(xiàng)公式bn及前n項(xiàng)和公式Tn
(3)記集合M={n|
2Sn(2-Tn)
n+2
≥λ,n∈N+},若M的子集個(gè)數(shù)為16,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(1+x)10=a0+a1x+a2x2+…+ax1010,則a1+2a2+3a3+…+10a10=( 。
A、9×29
B、10×210
C、10×29
D、9×210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=
x
x2+4
在區(qū)間[1,3]上是增函數(shù);
②函數(shù)f(x)=2x-x2的零點(diǎn)有3個(gè);
③不等式|x+1|+|x-3|≥a恒成立,則a≤4;
④已知a,b∈R+,2a+b=1,則
2
a
+
1
b
≥8;
⑤φ=
3
2
π是函數(shù)y=sin(2x+φ)為偶函數(shù)的一個(gè)充分不必要條件.
其中真命題的序號(hào)是(請將所有正確命題的序號(hào)都填上)
 

查看答案和解析>>

同步練習(xí)冊答案