在正方體ABCD-A1B1C1D1中,與AC平行,且過(guò)正方體三個(gè)頂點(diǎn)的截面是
 
考點(diǎn):直線與平面平行的性質(zhì)
專題:空間位置關(guān)系與距離
分析:根據(jù)題意,結(jié)合圖形,得出與AC平行,且過(guò)正方體三個(gè)頂點(diǎn)的截面是平面A1C1D,平面A1C1B.
解答: 解:在正方體ABCD-A1B1C1D1中,與AC平行,且過(guò)正方體三個(gè)頂點(diǎn)的截面是平面A1C1D,平面A1C1B.
∵AA1∥CC1,AA1=CC1,∴四邊形ACC1A1是平行四邊形;
∴AC∥A1C1
又AC?平面A1C1D,A1C1?平面A1C1D,∴AC∥平面A1C1D;
同理AC∥平面A1C1B.
故答案為:平面A1C1D,平面A1C1B.
點(diǎn)評(píng):本題考查了空間中的平行關(guān)系的判斷問(wèn)題,解題時(shí)應(yīng)結(jié)合圖形進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),若AB的中點(diǎn)為(1,-1),則拋物線的方程為(  )
A、y2=(2+2
3
)x
B、y2=4
3
x
C、y2=(1+2
3
)x
D、這樣的拋物線不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式|x-
(a+1)2
2
|≤
(a-1)2
2
,x2-3(a+1)x+2(3a+1)≤0的解集分別是A和B.問(wèn):“A⊆B”是“1≤a≤3,或a=-1”的充分條件嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn),G,H,I,J,L,M,N分別是所在棱的中點(diǎn),求證:
(1)E,F(xiàn),G,H,I,J共面;
(2)平面LMN∥平面EFGHIJ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將底邊BC長(zhǎng)為6
5
,腰長(zhǎng)AB為 9的等腰三角形沿DE折疊成二面角為120°的空間圖形,且AD=AE=3.
(1)求證:AP⊥BC;
(2)求二面角P-BD-E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩個(gè)完全相等的正方形ABCD和ABEF不在同一平面,點(diǎn)M,N分別在他們的對(duì)角線AC,BF上,且CM=BN,求證:MN∥平面BCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤2)=0.4,則P(ξ>2)=0.2;
②“x2-4x-5=0”的一個(gè)必要不充分條件是“x=5”;
③函數(shù)f(x)=x3-3x2+1在點(diǎn)(2,f(2))處的切線方程為y=-3;
④命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧(?q)%”是假命題.其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程x4-2x2-1=a,x∈[-1,2]有3個(gè)不同的根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a4=2,a5=5,則數(shù)列{lgan}的前8項(xiàng)和等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案