拋物線將坐標(biāo)平面分成兩部分,我們將焦點(diǎn)所在的部分(不包括拋物線本身)稱為拋物線的內(nèi)部.若點(diǎn)N(a,b)在拋物線C:y2=2px(p>0)的內(nèi)部,則直線l:by=p(x+a)與拋物線C的公共點(diǎn)的個(gè)數(shù)為(  )
A、0B、1C、2D、不能確定
考點(diǎn):直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意,點(diǎn)N在拋物線C的內(nèi)部,求出關(guān)系式|b|<
2pa
,且a>0①;
直線l與拋物線C的方程聯(lián)立,消去y,利用判別式判斷方程無解,即直線與拋物線無公共點(diǎn).
解答: 解:根據(jù)題意,點(diǎn)N(a,b)在拋物線C:y2=2px(p>0)的內(nèi)部,
∴|b|<
2pa
,且a>0;
又直線l:by=p(x+a)與拋物線C的方程聯(lián)立,
y2=2px
by=p(x+a)

消去y,得;
px2+(2pa-2b2)x+pa2=0,
∵p>0,
且△=(2pa-2b22-4p•pa2=4(2pa-b2)(-b2)=4b2(b2-2pa)<0,
∴方程組無解;
∴直線與拋物線無公共點(diǎn).
胡選:A.
點(diǎn)評(píng):不同考查了判斷直線與拋物線的交點(diǎn)問題,解題時(shí)應(yīng)把直線方程與拋物線方程聯(lián)立,判斷方程組解的個(gè)數(shù),從而解答問題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在6個(gè)電子元件中,有2個(gè)次品,4個(gè)合格品,每次任取一個(gè)測(cè)試,測(cè)試完后不再放回,直到兩個(gè)次品都找到為止,則經(jīng)過4次測(cè)試恰好將2個(gè)次品全部找出的概率(  )
A、
1
5
B、
4
15
C、
2
5
D、
14
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)若x=1是f(x)=tlnx-
x2
1+x
的一個(gè)極值點(diǎn),求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:若a1a2…an=1,ai∈R+,n∈N*,則
n
i=1
ai2
1+ai
n
2
;
(Ⅲ)證明:若a1a2…an≥1,λ∈R+,ai∈R+,n∈N*,則
n
i=1
ai2
λ+ai
n
λ+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的函數(shù)g(x)=|-x2+2bx+c|在區(qū)間[-1,1]上的最大值為M.
(1)當(dāng)b=1,c=2時(shí),求M的值.
(2)若|b|>1,證明對(duì)任意的c,都有M>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+7
x+2

(1)求函數(shù)的單調(diào)區(qū)間
(2)當(dāng)m∈(-2,2)時(shí),有f(-2m+3)>f(m2),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(2,0)作直線l交橢圓
x2
2
+y2=1于不同兩點(diǎn)A,B,設(shè)G為線段AB的中點(diǎn),直線OG交于C,D.
(1)若點(diǎn)G的橫坐標(biāo)為
2
3
,求l的方程;
(2)設(shè)△ABD與△ABC的面積分別為S1,S2,求|S1-S2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線x+y+1=0與以橢圓C的右焦點(diǎn)為圓心,以
2
b為半徑的圓相切.
(1)求橢圓的方程.
(2)若過橢圓C的右焦點(diǎn)F作直線L交橢圓C于A,B兩點(diǎn),交y軸于M點(diǎn),且
MA
=λ1
AF,
MB
=λ2
BF
,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5位同學(xué)各自隨機(jī)從3個(gè)不同城市中選擇一個(gè)城市旅游,則3個(gè)城市都有人選的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程2|x|=9-x2 在區(qū)間(k,k+1)(k∈Z)上有解,則所有滿足條件的實(shí)數(shù)k值的和為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案