7.扔一枚硬幣三次,則
(1)已知有一次是正面朝上,求另外兩次反面朝上的概率
(2)已知有兩次正面朝上,求另一次反面朝上的概率?

分析 (1)扔一枚硬幣三次,列舉出已知有一次是正面朝上,包含的基本事件個(gè)數(shù)和另外兩次反面朝上的基本事件個(gè)數(shù),由此能求出另外兩次反面朝上的概率.
(2)列舉出已知有兩次正面朝上,包含的基本事件個(gè)數(shù)和另一次反面朝上包含的基本事件個(gè)數(shù),由此能求出另一次反面朝上的概率.

解答 (12分)
解:(1)扔一枚硬幣三次,基本事件總數(shù)為:
(正正正),(正正反),(正反正),(反正正),(正反反),(反正反),(反反正),(反反反),
已知有一次是正面朝上,包含的基本事件有:
(正正正),(正正反),(正反正),(反正正),(正反反),(反正反),(反反正),
共有7個(gè),
另外兩次反面朝上的基本事件有(正反反),(反正反),(反反正),共3 個(gè),
∴另外兩次反面朝上的概率p1=$\frac{3}{7}$.
(2)已知有兩次正面朝上,包含的基本事件有(正正正),(正正反),(正反正),(反正正),共4 個(gè),
另一次反面朝上包含的基本事件有(正正反),(正反正),(反正正),共3 個(gè),
∴另一次反面朝上的概率p2=$\frac{3}{4}$.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知實(shí)數(shù)x,y滿足方程(x-2)2+(y-2)2=1.
(1)求$\frac{2x+y-1}{x}$的取值范圍;
(2)求|x+y+l|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知M是直線l:x=-1上的動點(diǎn),點(diǎn)F的坐標(biāo)是(1,0),過M的直線l′與l垂直,并且l′與線段MF的垂直平分線相交于點(diǎn)N
(Ⅰ)求點(diǎn)N的軌跡C的方程
(Ⅱ)設(shè)曲線C上的動點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A′,點(diǎn)P的坐標(biāo)為(2,0),直線AP與曲線C的另一個(gè)交點(diǎn)為B(B與A′不重合),直線P′H⊥A′B,垂足為H,是否存在一個(gè)定點(diǎn)Q,使得|QH|為定值?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=An2+Bn,且a1=2,a2=5.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知平面α、β和直線m、n,下列結(jié)論正確的是( 。
A.若m⊥α,m⊥n,則n∥αB.若m∥α,n∥α,則m∥n
C.若m?β,且α⊥β,則m⊥αD.若m⊥β,且α∥β,則m⊥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等比數(shù)列{an}的前n項(xiàng)和${S_n}={2^n}-a$,則$a_1^2+a_2^2+…+a_n^2$=( 。
A.(2n-1)2B.$\frac{1}{3}({2^n}-1)$C.4n-1D.$\frac{1}{3}({4^n}-1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=(x-1)2-1的值域?yàn)閇-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在數(shù)列{an}中,an-1=2an,若a5=4,則a4a5a6=64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,|$\overrightarrow{c}$|=$\sqrt{19}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.60°B.45°C.30°D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案