cos
12
的值等于( 。
A、
6
+
2
2
B、
2
2
C、
6
-
2
4
D、
3
+
2
4
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:根據(jù)cos
12
=cos(
π
6
+
π
4
),再利用兩角和的余弦公式進行化簡可得結(jié)果.
解答: 解:cos
12
=cos(
π
6
+
π
4
)=cos
π
6
cos
π
4
-sin
π
6
sin
π
4
=
3
2
×
2
2
-
1
2
×
2
2
=
6
-
2
4
,
故選:C.
點評:本題主要考查利用兩角和的余弦公式進行化簡求值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,a1=1,a2=3,則a1+a2+a 22+…+a 2n-1+a 2n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有n粒球(n≥2,n∈N*),任意將它們分成兩堆,求出兩堆球數(shù)的乘積,再將其中一堆任意分成兩堆,求出這兩堆球數(shù)的乘積,如此下去,每次任意將其中一堆分成兩堆,求出這兩堆球數(shù)的乘積,直到不能分為止,記所有乘積之和為Sn.例如,對于4粒球有如下兩種分解:(4)→(1,3)→(1,1,2)→(1,1,1,1),此時S4=1×3+1×2+1×1=6;(4)→(2,2)→(1,1,2)→(1,1,1,1),此時S4=2×2+1×1+1×1=6,于是發(fā)現(xiàn)S4為定值6.請你計算S5的值為
 
,猜想Sn=
 
(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意的t∈R,關(guān)于x,y的方程組
2x+y-4=0
(x-t)2+(y-kt)2=16
都有兩組不同的解,則實數(shù)k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①3是函數(shù)y=f(x)的極大值點;
②1是函數(shù)y=f(x)的極值點;
③當(dāng)x>3時,f(x)>0恒成立;
④函數(shù)y=f(x)在x=-2處切線的斜率小于零;
⑤函數(shù)y=f(x)在區(qū)間(-2,3)上單調(diào)遞減.
則正確命題的序號是
 
(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2
x2-4lnx的單調(diào)遞減區(qū)間是( 。
A、(-2,2)
B、(0,2)
C、(2,+∞)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個棱錐的三視圖如圖,則該棱錐的表面積為( 。
A、48+12
2
B、48+24
2
C、72+12
2
D、72+24
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:f(x)=
1
e-x在(0,+∞)上單調(diào)遞減;命題q:雙曲線
x2
4
-
y2
5
=1的焦點到拋物線x2=
1
4
y的準(zhǔn)線的距離為2,則下列命題正確的是( 。
A、p∨qB、p∧q
C、¬p∧qD、¬p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},Sn是其前n項的和,且滿足3an=2Sn+n(n∈N*
(Ⅰ)求證:數(shù)列{an+
1
2
}為等比數(shù)列;
(Ⅱ)記Tn=S1+S2+…+Sn,求Tn的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案