有n粒球(n≥2,n∈N*),任意將它們分成兩堆,求出兩堆球數(shù)的乘積,再將其中一堆任意分成兩堆,求出這兩堆球數(shù)的乘積,如此下去,每次任意將其中一堆分成兩堆,求出這兩堆球數(shù)的乘積,直到不能分為止,記所有乘積之和為Sn.例如,對(duì)于4粒球有如下兩種分解:(4)→(1,3)→(1,1,2)→(1,1,1,1),此時(shí)S4=1×3+1×2+1×1=6;(4)→(2,2)→(1,1,2)→(1,1,1,1),此時(shí)S4=2×2+1×1+1×1=6,于是發(fā)現(xiàn)S4為定值6.請(qǐng)你計(jì)算S5的值為
 
,猜想Sn=
 
(n≥2).
考點(diǎn):歸納推理
專題:推理和證明
分析:從n=1開始研究,到n=2,n=3,n=4,n=5,…找出Sn的共性,得到和的一般性規(guī)律,從而解決本題.
解答: 解:(2)→(1,1),此時(shí)S2=1×1=1;
(3)→(1,2)→(1,1,1),此時(shí)S3=1×2+1×1=2+1=3;
(4)→(1,3)→(1,1,2)→(1,1,1,1),此時(shí)S4=1×3+1+2+1×1=3+2+1=6;
(5)→(1,4)→(1,1,3)→(1,1,1,2)→(1,1,1,1,1),此時(shí)S5=1×4+1×3+1×2+1×1=4+3+2+1=10;

歸納猜想:Sn=(n-1)+(n-2)+(n-3)+…+3+2+1=
n2-n
2

故答案為:10;
n2-n
2
點(diǎn)評(píng):本題考查的是歸納推理,要求學(xué)生理解本題的新定義的規(guī)律,從出發(fā)現(xiàn)規(guī)律,得到本題的解.另外,本題還可以嘗試從S5=4+S4的角度去尋找解題規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U={(x,y)}|x2y2=4,x∈Z,y∈Z},A={(x,y)||x|=2,|y|=1},求∁UA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知雙曲線
x2
9
-
y2
m
=1的一個(gè)焦點(diǎn)為(5,0),則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC的四個(gè)頂點(diǎn)均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,且PA=6,若球的表面積為48π,則該三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,cos2
A
2
=
b+c
2c
(a,b,c分別為角A,B,C的對(duì)邊),則cos
A+B
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式2|x-3|+|x-4|<2解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-6ax的單調(diào)遞減區(qū)間是(-2,2),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos
12
的值等于( 。
A、
6
+
2
2
B、
2
2
C、
6
-
2
4
D、
3
+
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖程序框圖,輸出k的值為( 。
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案