12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+1,x≥0}\\{-1+lo{g}_{2}(-x),x<0}\end{array}\right.$,若函數(shù)g(x)=f(x)-a有三個不同的零點x1,x2,x3,則x1+x2+x3的取值范圍是( 。
A.(0,4)B.(-4,0)C.[0,$\frac{15}{4}$)D.($\frac{1}{2}$,2)

分析 作函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+1,x≥0}\\{-1+lo{g}_{2}(-x),x<0}\end{array}\right.$與y=a的圖象,再設x1<x2<x3,從而可得x2+x3=2×2=4,再求x1的范圍即可.

解答 解:作函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+1,x≥0}\\{-1+lo{g}_{2}(-x),x<0}\end{array}\right.$與y=a的圖象如下,
,
不妨設x1<x2<x3,
結合圖象可知,x2+x3=2×2=4,-1+log24=1,-1+log2$\frac{1}{4}$=-3,
故-4≤x1<-$\frac{1}{4}$,
故0≤x1+x2+x3<$\frac{15}{4}$;
故選:C.

點評 本題考查了數(shù)形結合的應用及函數(shù)的零點的判斷的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-2|.
(1)解不等式f(x)+f(x+1)≤2;
(2)若a>0,求證:f(ax)-af(x)≤2f(a+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.$\underset{lim}{n→x}$($\frac{2+3}{6}$+$\frac{{2}^{2}+{3}^{2}}{{6}^{2}}$+$\frac{{2}^{3}+{3}^{3}}{{6}^{3}}$+…+$\frac{{2}^{n}+{3}^{n}}{{6}^{n}}$)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(I)求|2x-1|+|2x+3|<5的解集;
(II)設a,b,c均為正實數(shù),試證明不等式$\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}≥\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}$,并說明等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+bx+c在點(e,f(e))處的切線斜率為$\frac{e+1}{e}$,且切線在x,y軸上的截距相等.
(1)求f(x)的表達式;
(2)若f(x)滿足f(x)≥g(x)恒成立,則稱f(x)是g(x)的一個“上界函數(shù)”,如果函數(shù)f(x)為g(x)=$\frac{t}{x}$-1nx+x(t為實數(shù))的一個“上界函數(shù)”,求證:函數(shù)g(x)的圖象上一定不存在不同的兩點(x1,g(x1)),(x2,g(x2))(其中x1,x2∈(0,+∞)),使得g(x1)=g(x2)成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.小李以10元一股的價格購買了一支股票,他將股票當天的最高價格y(元)與第t個交易日,其中0≤t≤24進行了記錄,得到有關數(shù)據(jù)如下:
t03691215182124
y/元10.013.09.97.010.013.010.017.010.0
他經過研究后認為單支股票當天的最高價格y(元)是第t個交易日的函數(shù)y=f(t),并且認為y=f(t)的曲線可近似地看作函數(shù)f(t)=Asinωt+h的圖象,請根據(jù)他的觀點解決問題:試根據(jù)以上數(shù)據(jù),求出函數(shù)f(t)=Asinωt+h的振幅、最小正周期和表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知圓C的圓心是直線x-y+1=0與x軸的交點,且圓C被直線x+y+3=0所截得的弦長為4,則圓C的方程為(x+1)2+y2=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.證明:$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$<1n2.(n∈N+).

查看答案和解析>>

同步練習冊答案