分析 (Ⅰ)把要解的不等式等價轉(zhuǎn)化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,即得所求.
(Ⅰ)根據(jù)$\frac{1}{2}$($\frac{1}{2a}$+$\frac{1}{2b}$)≥$\frac{1}{2\sqrt{ab}}$≥$\frac{1}{a+b}$,當(dāng)且僅當(dāng)a=b時等號成立,同理得到其它,相加即可得以證明.
解答 解:(Ⅰ)由|2x-1|+|2x+3|<5,可得$\left\{\begin{array}{l}{x<-\frac{3}{2}}\\{1-2x-2x-3<5}\end{array}\right.$①,$\left\{\begin{array}{l}{-\frac{3}{2}≤x<\frac{1}{2}}\\{1-2x+2x+3<5}\end{array}\right.$②,$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{2x-1+2x+3<5}\end{array}\right.$,③,
解①求得x∈∅,解②求得-$\frac{3}{2}$≤x<$\frac{1}{2}$,解③求得$\frac{1}{2}$≤x<$\frac{3}{4}$,
綜上可得,不等式|2x-1|+|2x+3|<5的解集為{x|-$\frac{3}{2}$≤x<$\frac{3}{4}$};
(Ⅱ)證明:∵a,b,c均為正實數(shù),
∴$\frac{1}{2}$($\frac{1}{2a}$+$\frac{1}{2b}$)≥$\frac{1}{2\sqrt{ab}}$≥$\frac{1}{a+b}$,當(dāng)且僅當(dāng)a=b時等號成立;
$\frac{1}{2}$($\frac{1}{2b}$+$\frac{1}{2c}$)≥$\frac{1}{2\sqrt{bc}}$≥$\frac{1}{b+c}$,當(dāng)且僅當(dāng)b=c時等號成立;
$\frac{1}{2}$($\frac{1}{2a}$+$\frac{1}{2c}$)≥$\frac{1}{2\sqrt{ac}}$≥$\frac{1}{c+a}$,當(dāng)且僅當(dāng)a=c時等號成立;
三個不等式相加,得$\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}≥\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}$,當(dāng)且僅當(dāng)a=b=c時等號成立.
點評 本題考查了絕對值值不等式的解法和基本不等式的應(yīng)用,關(guān)鍵是掌握其性質(zhì),并注意等號成立的條件,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | -$\frac{27}{16}$ | C. | $\frac{8}{9}$ | D. | $\frac{15}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 頂點 | B. | 焦點 | C. | 離心率 | D. | 長軸長 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,4) | B. | (-4,0) | C. | [0,$\frac{15}{4}$) | D. | ($\frac{1}{2}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com