16.設(shè)函數(shù)f(x)=|x-$\frac{4}{m}$|+|x+m|,(m>0)
(I)證明:f(x)≥4
(II)若f(1)>5,求m的取值范圍.

分析 (Ⅰ)根據(jù)絕對(duì)值的性質(zhì)以及基本不等式的性質(zhì)求出f(x)的最小值,證明即可;(Ⅱ)通過討論m的范圍,得到關(guān)于m的不等式,取并集即可.

解答 (I)證明:$f(x)=|{x-\frac{4}{m}}|+|{x+m}|≥|{(x-\frac{4}{m})-(x+m)}|=|{\frac{4}{m}+m}|$,
因?yàn)閙>0,所以$f(x)=\frac{4}{m}+m≥2\sqrt{\frac{4}{m}×m}=4$,
當(dāng)且僅當(dāng)m=2時(shí),等號(hào)成立…(5分)
(II)解:由m>0及f(1)>5得,$|{1-\frac{4}{m}}|+1+m>5$(*),
①當(dāng)0<m≤4時(shí),不等式(*)可化為:
$\frac{4}{m}+m>5,即{m^2}-5m+4>0$,
解得,m>4,或m<1所以,0<m<1,
②當(dāng)m>4時(shí),不等式(*)可化為:
$2-\frac{4}{m}+m>5,即{m^2}-3m-4>0$,
解得,m>4,或m<-1所以,m>4,
綜上,m的取值范圍是(0,1)∪(4,+∞)…(10分)

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問題,考查分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示,若a=-4,則輸出結(jié)果是( 。
A.是正數(shù)B.是負(fù)數(shù)C.-4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知二項(xiàng)式${(\root{3}{x^2}+\frac{1}{x})^n}$的展開式中含有x2的項(xiàng)是第3項(xiàng),則n=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果滿足不等式$|{x-\frac{5}{4}}|<b({b>0})$的一切實(shí)數(shù)x也滿足不等式|x-1|<$\frac{1}{2}$,則b的取值范圍是(  )
A.$({0,\frac{3}{4}})$B.$({0,\frac{1}{4}}]$C.$[{\frac{1}{4},\frac{3}{4}}]$D.$[{\frac{3}{4},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一名工人維護(hù)3臺(tái)獨(dú)立的游戲機(jī),一天內(nèi)3臺(tái)需要維護(hù)的概率分別為0.9、0.8和0.85,則一天內(nèi)至少有一臺(tái)游戲機(jī)不需要維護(hù)的概率為0.388(結(jié)果用小數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.關(guān)于周期函數(shù),下列說法錯(cuò)誤的是( 。
A.函數(shù)$f(x)=sin\sqrt{x}$不是周期函數(shù).
B.函數(shù)$f(x)=sin\frac{1}{x}$不是周期函數(shù).
C.函數(shù)f(x)=sin|x|不是周期函數(shù).
D.函數(shù)f(x)=|sinx|+|cosx|的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)離心率為$\frac{1}{2}$,過點(diǎn)$E(-\sqrt{7},0)$的橢圓的兩條切線相互垂直.
(1)求此橢圓的方程;
(2)若存在過點(diǎn)(t,0)的直線l交橢圓于A,B兩點(diǎn),使得FA⊥FB(F為右焦點(diǎn)),求t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.將下列角度化為弧度,弧度轉(zhuǎn)化為角度
(1)780°,(2)-1560°,(3)67.5°(4)$-\frac{10}{3}π$,(5)$\frac{π}{12}$,(6)$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在等差數(shù)列{an}中,已知a4+a7+a10=15,$\sum_{i=4}^{14}$ai=77.若ak=13,則正整數(shù)k的值為15.

查看答案和解析>>

同步練習(xí)冊(cè)答案