已知:如圖,等腰直角三角形ABC的直角邊AC=BC=2,沿其中位線DE將平面ADE折起,使平面ADE⊥平面BCDE,得到四棱錐A-BCDE,設(shè)CD、BE、AE、AD的中點(diǎn)分別為M、N、P、Q.

(1)求證:M、N、P、Q四點(diǎn)共面;
(2)求證:平面ABC⊥平面ACD;
(3)求異面直線BE與MQ所成的角.
考點(diǎn):平面與平面垂直的判定,空間圖形的公理,異面直線及其所成的角
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(1)要證四點(diǎn)共線,只需找到一個(gè)平面,是這四個(gè)點(diǎn)在這個(gè)平面內(nèi),用確定平面的方法,兩條平行線確定一個(gè)平面,即可證出;
(2)要證明兩個(gè)平面垂直,只需證明其中一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線即可,也就是只需證線面垂直即可,而要證線面垂直,只需證明這條直線垂直平面內(nèi)的兩條相交直線,這樣,一步步尋找成立的條件.
(3)求異面直線所成角,先平移兩條異面直線中的一條,使它們成為相交直線,則相交直線所成角就是異面直線所成角或其補(bǔ)角,再放入三角形中計(jì)算即可.
解答: (1)證明:由條件有PQ為△ADE的中位線,MN為梯形BCDE的中位線,
∴PQ∥DE,MN∥DE,
∴PQ∥MN
∴M、N、P、Q四點(diǎn)共面.…(3分)
(2)證明:由等腰直角三角形ABC有AD⊥DE,CD⊥DE,DE∥BC
又AD∩CD=D,
∴DE⊥面ACD,
又DE∥BC
∴BC⊥平面ACD,
∵BC?平面ABC,
∴平面ABC⊥平面ACD…(6分)
(3)解:由條件知AD=1,DC=1,BC=2,
延長(zhǎng)ED到R,使DR=ED,連結(jié)RC    …(8分)
則ER=BC,ER∥BC,故BCRE為平行四邊形 …(10分)
∴RC∥EB,又AC∥QM
∴∠ACR為異面直線BE與QM所成的角θ(或θ的補(bǔ)角)…(11分)
∵DA=DC=DR,且三線兩兩互相垂直,
∴由勾股定理得AC=AR=RC=
2
,…(12分)
∵△ACR為正三角形,
∴∠ACR=60°,
∴異面直線BE與QM所成的角大小為60°.…(13分)
點(diǎn)評(píng):本題考查了平面垂直,四點(diǎn)共線,以及異面直線所成角的求法,是立體幾何中的常規(guī)題,應(yīng)當(dāng)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由直線y=0,x=e,y=2x及曲線y=
2
x
所圍成的封閉的圖形的面積為( 。
A、3
B、3+2ln2
C、e2-3
D、e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在實(shí)數(shù)對(duì)(a,b),使得等式f(a+x)•f(a-x)=b對(duì)定義域中的每一個(gè)x都成立,則稱函數(shù)f(x)是“(a,b)型函數(shù)”.
(1)判斷函數(shù)f(x)=3x是否為“(a,b)型函數(shù)”,并說明理由;
(2)已知函數(shù)g(x)是“(1,4)型函數(shù)”,且當(dāng)x∈[0,1]時(shí),g(x)=x2-4x+4,當(dāng)x∈[1,2],求函數(shù)h(x)=(x+2)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)與
b
=(1,y)共線,設(shè)函數(shù)y=f(x)
(1)求函數(shù)f(x)的最小正周期及值域;
(2)已知銳角△ABC的三個(gè)內(nèi)角分別為A,B,C若有f(A-
π
3
)=
3
,AC=1,AB=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=2,|
b
|=1,且
a
b
的夾角為
π
3

(1)若向量
a
+k
b
a
-k
b
相互垂直,求實(shí)數(shù)k的值;
(2)是否存在實(shí)數(shù)λ,使向量2λ
a
+7
b
與向量
a
b
的夾角為鈍角?若存在,求出實(shí)數(shù)λ的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)化簡(jiǎn)
1+sinx
cosx
sin2x
2cos2(
π
4
-
x
2
)
,
(2)一個(gè)扇形的面積為1,周長(zhǎng)為4,則中心角的弧度數(shù)為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

馬航MH370失蹤牽動(dòng)全球人的眼光,某衛(wèi)星發(fā)現(xiàn)海上A處北偏東45°方向,距離A點(diǎn)100(
3
-1)海里的B處有一疑是漂浮物,在A處北偏西75°方向,距離A點(diǎn)200海里的C處我方“海巡1號(hào)”奉命以10
3
海里/小時(shí)的速度去捕撈此漂浮物,而漂浮物順洋流正以10海里/小時(shí)的速度,以B處向北偏東30°方向漂流.問海巡1號(hào)沿什么方向行駛才能最快到達(dá)疑是漂浮物出,并求出所需時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
2-x
2+x
+
2x-2
的定義域?yàn)镸,
(Ⅰ)求M;
(Ⅱ)當(dāng)x∈M時(shí),求函數(shù)f(x)=2log22x+alog2x的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,且各棱長(zhǎng)均相等.D,E,F(xiàn)分別為棱AB,BC,A1C1的中點(diǎn).
(1)證明EF∥平面A1CD;
(2)證明平面A1CD⊥平面A1ABB1

查看答案和解析>>

同步練習(xí)冊(cè)答案