1.已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),對(duì)任意的非負(fù)實(shí)數(shù)x,有f(x+2)=2f(x),當(dāng)x∈[0,2)時(shí),f(x)=$\left\{\begin{array}{l}{x^2}-2x\;,\;\;x∈[{0\;,\;\;1})\\-{2^x}\;,\;\;x∈[{1\;,\;\;2})\end{array}$,若x∈[-2,0]時(shí),f(x)的值域是(  )
A.[-4,0]B.[-4,-2]∪[-1,0]C.(-4,0]D.(-4,-2]∪(-1,0]

分析 當(dāng)x∈[0,2)時(shí),f(x)=$\left\{\begin{array}{l}{x^2}-2x\;,\;\;x∈[{0\;,\;\;1})\\-{2^x}\;,\;\;x∈[{1\;,\;\;2})\end{array}$,可得函數(shù)的值域?yàn)椋?4,-2]∪(-1,0],利用函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),可得x∈[-2,0]時(shí),f(x)的值域.

解答 解:當(dāng)x∈[0,2)時(shí),f(x)=$\left\{\begin{array}{l}{x^2}-2x\;,\;\;x∈[{0\;,\;\;1})\\-{2^x}\;,\;\;x∈[{1\;,\;\;2})\end{array}$,
可得函數(shù)的值域?yàn)椋?4,-2]∪(-1,0],
∵函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),
∴x∈[-2,0]時(shí),f(x)的值域是(-4,-2]∪(-1,0],
故選D.

點(diǎn)評(píng) 本題考查函數(shù)的值域,考查偶函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知z1=m2-(m2-3m)i,z2=(m2-4m+3)i+10(m∈R),若z1<z2,求實(shí)數(shù)m的取值范圍為{3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=cos(ωx+\frac{π}{3})(ω>0)$,圖象上任意兩條相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間,對(duì)稱中心;
(2)若關(guān)于x的方程2cos2x+mcosx+2=0在$x∈({0,\frac{π}{2}})$上有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列命題中正確的是( 。
A.命題“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1>0”
B.命題“若cosx=cosy,則x=y”的逆否命題是真命題:
C.命題“存在四邊相等的四邊形不是正方形”是假命題
D.命題”若x=3,則x2-2x-3=0”的否命題是“若x≠3,則x2-2x-3≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{2}cosθ}\\{y=1+\sqrt{2}sinθ}\end{array}\right.$,以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)+$\sqrt{2}$=0.
(1)求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;
(2)求曲線C1上的點(diǎn)到曲線C2的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知集合A={x|x2≤3x+10},B={x|a+1≤x≤2a+1}.
(1)若a=3,求(∁RA)∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.△ABC的三邊分別為a,b,c.若a=2,b=3,c=4,則其最小角的余弦值為$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}$=1表示焦點(diǎn)在x軸上的橢圓,命題q:方程$\frac{x^2}{m}-\frac{y^2}{1-m}$=1表示雙曲線,則p是q的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某公共汽車站,每隔15分鐘有一輛車出發(fā),并且出發(fā)前在車站停靠3分鐘,則某人隨機(jī)到達(dá)該站的候車時(shí)間不超過(guò)10分鐘的概率為(  )
A.$\frac{1}{5}$B.$\frac{2}{15}$C.$\frac{13}{15}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案