精英家教網 > 高中數學 > 題目詳情
7.已知等差數列{an}滿足已知等差數列{ an }滿足a2=0,a6+a8=-10
(I)求數列{an }的通項公式;
(II)求數列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項和.

分析 (I)設等差數列{an }的公差為d,頂點關于首項和公差的方程組解之;
(II)設數列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項和為Sn,利用錯位相減法求和.

解答 解:(I)設等差數列{an }的公差為d,由已知條件可得$\left\{\begin{array}{l}{{a}_{1}+d=0}\\{2{a}_{1}+12d=-10}\end{array}\right.$
解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=-1}\end{array}\right.$,
故數列{an }的通項公式為an=2-n;    …(6分)
(II)設數列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項和為Sn,即Sn=${a}_{1}+\frac{{a}_{2}}{2}+…+\frac{{a}_{n}}{{2}^{n-1}}$,S1=a1=1,
$\frac{{S}_{n}}{2}=\frac{{a}_{1}}{2}+\frac{{a}_{2}}{4}+…+\frac{{a}_{n-1}}{{2}^{n-1}}+\frac{{a}_{n}}{{2}^{n}}$…(8分)
所以,當n>1時,兩式相減得到$\frac{{S}_{n}}{2}={a}_{1}+\frac{{a}_{2}-{a}_{1}}{2}+…+\frac{{a}_{n}-{a}_{{a}_{n-1}}}{{2}^{n-1}}-\frac{{a}_{n}}{{2}^{n}}$
=1-($\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{2}^{n-1}}$)-$\frac{2-n}{{2}^{n}}$=1-(1-$\frac{1}{{2}^{n-1}}$)-$\frac{2-n}{{2}^{n}}$=$\frac{n}{{2}^{n}}$  …(12分)
所以${S}_{n}=\frac{n}{{2}^{n-1}}$                            …(13分)
綜上,數列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項和為$\frac{n}{{2}^{n-1}}$.    …(14分)

點評 本題考查了等差數列的通項公式的求法以及利用錯位相減法求數列的前n項和;經?疾,注意掌握.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

17.在一次奧運會比賽中,抽樣統計甲、乙兩位射擊運動員的5次訓練成績(單位:環(huán)),結果如表:
運動員第1次第2次第3次第4次第5次
8.79.19.08.99.3
8.99.09.18.89.2
試用統計學知識分析甲、乙兩位射擊運動員的5次訓練成績的穩(wěn)定性參考公式:方差s2=$\frac{1}{n}$[(x1-x)2+(x2-x)2+…+(xn-x)2],其中x為x1,x2,…,xn的平均數.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知甲、乙兩組數據如莖葉圖所示,若它們的中位數和平均數都相同,且ma+nb=1(a,b∈R+),則$\frac{1}{2a}+\frac{3}$的最小值為(  )
A.36B.32C.$4\sqrt{6}$D.12

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知$\frac{tanα}{tanα-1}=-1$,求下列各式的值
(1)$\frac{sinα-3cosα}{sinα+cosα}$
(2)若α 是第三象限角,求$cos(-π+α)+cos(\frac{π}{2}+α)$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.已知實數x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,則z=x-y的最大值與最小值之差為( 。
A.5B.6C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$的兩個焦點為F1,F2,過F1的直線交橢圓于A、B兩點,若|AB|=6,則|AF2|+|BF2|的值為( 。
A.10B.8C.16D.12

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知矩形ABCD的頂點都在半徑為4的球面上,且AB=6,$BC=2\sqrt{3}$,則棱錐O-ABCD的體積為( 。
A.$8\sqrt{3}$B.$8\sqrt{2}$C.$6\sqrt{6}$D.12

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知函數f(x)=ax3-$\frac{3}{2}$x2+1存在唯一的零點x0,且x0<0,則實數a的取值范圍是( 。
A.(-∞,-$\frac{\sqrt{2}}{2}$)B.(-∞,-2)C.($\frac{1}{2}$,+∞)D.($\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知拋物線x2=4y的焦點為F,P為該拋物線上的一個動點.
(1)當|PF|=2時,求點P的坐標;
(2)過F且斜率為1的直線與拋物線交與兩點AB,若P在弧AB上,求△PAB面積的最大值.

查看答案和解析>>

同步練習冊答案