16.若方程(6a2-a-2)x+(3a2-5a+2)y+a+1=0表示平行于y軸的直線,則a為1.

分析 根據(jù)直線ax+by+c=0與y軸平行?a≠0,b=0,c≠0.

解答 解:依題意得:6a2-a-2≠0,3a2-5a+2=0且a+1≠0,
解得a=1.
故答案是:1.

點(diǎn)評(píng) 本題考查了兩直線平行的判定,要注意ax+by+c=0與y軸平行c≠0,如果等于0就與y軸重合了.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知直線2x-y+m=0和圓O:x2+y2=5,
(1)m為何值時(shí),沒(méi)有公共點(diǎn);
(2)m為何值時(shí),截得的弦長(zhǎng)為2;
(3)若直線和圓交于A、B兩點(diǎn),此時(shí)OA⊥OB,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x)是定義域?yàn)镽的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2-4x.
(1)求f(-3)+f(-2)+f(3)的值;
(2)求f(x)的解析式,并寫(xiě)出函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x-2≥0\\ x-y≤0\\ x+y-6≤0\end{array}\right.$,那么z=2x+y的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}中,a1=1,an+1=2an+3,求數(shù)列通項(xiàng)及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖矩形ABCD兩條對(duì)角線相交于M(2,0),AB邊所在直線方程為x-3y-6=0,點(diǎn)T(-1,1)在AD邊所在直線上,
(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程;
(3)過(guò)外接圓外一點(diǎn)N(1,6),向圓作兩條切線,切點(diǎn)分別為E、F,求EF所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x∈N|1<x<log2k},集合A中至少有3個(gè)元素,則( 。
A.k>8B.k≥8C.k>16D.k≥16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=$\frac{1}{2}$BC=1,E是底邊BC上的一點(diǎn),且EC=3BE.現(xiàn)將△CDE沿DE折起到△C1DE的位置,得到如圖2所示的四棱錐C1-ABED,且C1A=AB.
(Ⅰ)求證:C1A⊥平面ABED;
(Ⅱ)若M是棱C1E的中點(diǎn),求直線BM與平面C1DE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列函數(shù)中,在區(qū)間(-1,1)上單調(diào)遞減的函數(shù)為( 。
A.y=x2B.y=3xC.y=sinxD.y=log${\;}_{\frac{1}{2}}$(x+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案