7.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-4,7),則$\overrightarrow a$在$2\sqrt{3}\overrightarrow b$方向上的射影為( 。
A.$\sqrt{13}$B.$\frac{{\sqrt{13}}}{5}$C.$\sqrt{65}$D.$\frac{{\sqrt{65}}}{5}$

分析 根據(jù)向量投影影的定義,$\overrightarrow a$在$2\sqrt{3}\overrightarrow b$方向上的射影即可.

解答 解:因?yàn)?\overrightarrow a=(2,3),\overrightarrow b=(-4,7)$,
所以$|{\overrightarrow a}|=\sqrt{13},|{\overrightarrow b}|=\sqrt{65},\overrightarrow a•\overrightarrow b=13$,則$|{\overrightarrow a}|cosθ=\frac{{\sqrt{65}}}{5}$,
則$\overrightarrow a$在$\overrightarrow b$方向上的射影既是$\overrightarrow a$在$2\sqrt{3}\overrightarrow b$方向上的射影為$\frac{{\sqrt{65}}}{5}$,
故選:D

點(diǎn)評 本題考查了平面向量中一向量在另一向量方向上的投影的定義的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知x∈R,m=x2-1,n=2x+2.求證:m,n中至少有一個是非負(fù)數(shù).
(2)已知a,b,c均為正實(shí)數(shù),且a+b+c=1,求證:($\frac{1}{a}$-1)($\frac{1}$-1)($\frac{1}{c}$-1)≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知冪函數(shù)f(x)=k•xα的圖象經(jīng)過點(diǎn)(${\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}}$),則k-α=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.“奶茶妹妹”對某時間段的奶茶銷售量及其價格進(jìn)行調(diào)查,統(tǒng)計出售價x元和銷售量y杯之間的一組數(shù)據(jù)如表所示:
價格x55.56.57
銷售量y121064
通過分析,發(fā)現(xiàn)銷售量y對奶茶的價格x具有線性相關(guān)關(guān)系.
(Ⅰ)求銷售量y對奶茶的價格x的回歸直線方程;
(Ⅱ)已知一杯奶茶的成本價為3元,根據(jù)(Ⅰ)中價格對銷量的預(yù)測,為了獲得最大利潤,“奶茶妹妹”應(yīng)該將奶茶的售價大約定為多少比較合理?
注:在回歸直線y=$\hat b$x+$\hat a$中,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-,{\overline{x}}^{2}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.$\sum_{i=1}^4{{x_i}^2}$=52+5.52+6.52+72=146.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中角A、B、C所對的邊分別為a、b、c,已知a=5,b=7,cosC=$\frac{1}{7}$,$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知i是虛數(shù)單位,復(fù)數(shù)z=-1+3i,則復(fù)數(shù)z的模|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在山頂鐵塔上B處測得地面上一點(diǎn)A的俯角α=54°40′,在塔底C處測得A處的俯角β=50°1′.已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2sin(-2x-$\frac{2π}{3}$).
(I)當(dāng)x∈(0,$\frac{π}{3}$)時,求函數(shù)f(x)的值域.
(II)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$P:|5x-2|>3,q:\frac{1}{{{x^2}+4x-5}}>0$,則?P是?q的什么條件?

查看答案和解析>>

同步練習(xí)冊答案