在△ABC中,若AB=2,AC+BC=3,則cosC的最小值是
 
考點(diǎn):余弦定理
專題:解三角形
分析:利用余弦定理列出關(guān)系式,再利用完全平方公式變形,把c,a+b的值代入,并利用基本不等式求出cosC的最小值即可.
解答: 解:∵△ABC中,c=2,a+b=3,
∴由余弦定理得:cosC=
a2+b2-c2
2ab
=
(a+b)2-c2-2ab
2ab
=
5-2ab
2ab
=
5
2ab
-1≥
5
(a+b)2
2
-1=
10
9
-1=
1
9
,
當(dāng)且僅當(dāng)a=b時取等號,
則cosC的最小值為
1
9
,
故答案為:
1
9
點(diǎn)評:此題考查了余弦定理,基本不等式的運(yùn)用,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等差數(shù)列,首項為a1,公差為d,前n項和為Sn,若數(shù)列{an}中任意不同兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列為“F數(shù)列”.
(1)若a1=4,d=2,判斷該數(shù)列是否為“F數(shù)列”.
(2)若a1,d∈N,是否存在這樣的“F數(shù)列”,使S10≤70?若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,請說明理由.
(3)試問:數(shù)列{an}為“F數(shù)列”的充要條件是什么?給出你的結(jié)論并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由直線x=-
π
3
,x=
π
3
,y=0與曲線y=cosx所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(1,2)的直線,將圓形區(qū)域{(x,y)|x2+y2≤9}分為兩部分,使這兩部分的面積之差最大,則該直線的方程為(  )
A、x+2y-5=0
B、y-2=0
C、2x-y=0
D、x-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x+
1
x-1
+a≥9對x∈(1,+∞)恒成立,則正實(shí)數(shù)a的最小值為(  )
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),試寫出一個與向量
a
垂直的單位向量
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求函數(shù)y=
1
4-x2
的定義域;
(2)設(shè)a,b為實(shí)數(shù)且a+b=3,求2a+2b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(Ⅰ)(
25
9
)0.5+(
27
64
)-
2
3
+(0.1)-2-100•π0

(Ⅱ)lg
1
2
-lg
5
8
+lg12.5-log89•log27
8+e2ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若M={x|x>1},N={x|x≥a},且N⊆M,則( 。
A、a≤1B、a≥1
C、a<1D、a>1

查看答案和解析>>

同步練習(xí)冊答案