11.定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=2x-x2,則f(0)+f(-1)=-1.

分析 本題利用奇函數(shù)的定義,和函數(shù)解析式求解函數(shù)值.

解答 解:∵f(x)是定義在R上的奇函數(shù),f(-x)=-f(x)
∴f(0)=0,f(-1)=-f(1),
又∵當(dāng)x>0時(shí),f(x)=2x-x2,
∴f(0)+f(-1)=f(0)-f(1)=0-2+1=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查了奇函數(shù)的定義,函數(shù)的概念,是一道典型的計(jì)算題,難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=mx2-mx-1.若對(duì)一切實(shí)數(shù)x,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax-lnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;   
( 2)當(dāng)x∈(0,e]時(shí),求g(x)=e2x-lnx的最小值;
(3)當(dāng)x∈(0,e]時(shí),證明:e2x-lnx-$\frac{lnx}{x}$>$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.觀察下面數(shù)列的特點(diǎn),用適當(dāng)?shù)臄?shù)填空1,$\frac{1}{4}$,$\frac{1}{9}$,$\frac{1}{16}$,$\frac{1}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線y=x+2與橢圓Γ:$\frac{x^2}{a^2}$+y2=1(a>1)存在公共點(diǎn).
(1)求a的取值范圍;
(2)求當(dāng)a最小時(shí)橢圓Γ的方程;
(3)在(2)的條件下,若A,B是橢圓Γ上關(guān)于y軸對(duì)稱的兩點(diǎn),Q是橢圓Γ上異于A,B的任意一點(diǎn),直線QA,QB分別與y軸交于點(diǎn)M(0,m),N(0,n),試判斷mn是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,等腰三角形ABC,AB=AC=2,∠BAC=120°.E,F(xiàn)分別為邊AB,AC上的動(dòng)點(diǎn),且滿足$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,其中m,n∈(0,1),m+n=1,M,N分別是EF,BC的中點(diǎn),則|MN|的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在三角形ABC中,∠A=30°,∠C=90°,在∠ACB內(nèi)部任意作一條射線CM,與線段AB交于點(diǎn)M,則AM<AC的概率(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線$l:\left\{{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}}\right.$(t為參數(shù))恒過橢圓$C:\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}}\right.$(φ為參數(shù))在右焦點(diǎn)F.
(1)求m的值;
(2)設(shè)直線l與橢圓C交于A,B兩點(diǎn),求|FA|•|FB|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)g(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$,ω>0)的圖象如圖所示,函數(shù)$f(x)=g(x)+\frac{{\sqrt{3}}}{2}cos2x-\frac{3}{2}sin2x$
(1)如果${x_1},{x_2}∈(-\frac{π}{6},\frac{π}{3})$,且g(x1)=g(x2),求g(x1+x2)的值;
(2)當(dāng)$x∈[-\frac{π}{6},\frac{π}{3}]$時(shí),求函數(shù)f(x)的最大值、最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案