19.曲線x2+y2=4與曲線${x^2}+\frac{y^2}{9}=1$的交點(diǎn)個(gè)數(shù)是4.

分析 聯(lián)立方程,可得4-y2+$\frac{{y}^{2}}{9}$=1,解得y=±$\frac{3\sqrt{6}}{4}$,每一個(gè)y對(duì)應(yīng)2個(gè)x值,即可得出結(jié)論.

解答 解:聯(lián)立方程,可得4-y2+$\frac{{y}^{2}}{9}$=1,∴y=±$\frac{3\sqrt{6}}{4}$,每一個(gè)y對(duì)應(yīng)2個(gè)x值,
∴曲線x2+y2=4與曲線${x^2}+\frac{y^2}{9}=1$的交點(diǎn)個(gè)數(shù)是4,
故答案為4.

點(diǎn)評(píng) 本題考查曲線與曲線交點(diǎn)的個(gè)數(shù),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.f(x)=ax3-x2+x+2,$g(x)=\frac{elnx}{x}$,?x1∈(0,1],?x2∈(0,1],使得f(x1)≥g(x2),則實(shí)數(shù)a 的取值范圍是[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)$f(x)=2sin(2x-\frac{π}{3})+1$在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
2x-$\frac{π}{3}$-$\frac{4π}{3}$-$\frac{π}{2}$0$\frac{π}{2}$$\frac{2π}{3}$
x-$\frac{π}{2}$-$\frac{π}{3}$-$\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{π}{2}$
f(x)
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并在給出的直角坐標(biāo)系中,畫(huà)出f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象;
(2)利用函數(shù)的圖象,直接寫(xiě)出函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),過(guò)E點(diǎn)做EF⊥PB交PB于點(diǎn)F.求證:
(1)PA∥平面DEB;
(2)PB⊥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.過(guò)點(diǎn)P(0,-1)的直線與拋物線x2=-2y公共點(diǎn)的個(gè)數(shù)為(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知點(diǎn)A(2,1)和B(-1,3),若直線3x-2y-a=0與線段AB相交,則a的取值范圍是(  )
A.-4≤a≤9B.a≤-4或a≥9C.-9≤a≤4D.a≤-9或a≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在直角坐標(biāo)系xOy中,直線l:$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{5}+2t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+4=0.
(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)A(0,$\sqrt{5}$),直線l與曲線C相交于點(diǎn)M、N,求$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,面積為4的矩形ABCD中有一個(gè)陰影部分,若往矩形ABCD中隨機(jī)投擲1000個(gè)點(diǎn),落在矩形ABCD的非陰影部分中的點(diǎn)數(shù)為350個(gè),試估計(jì)陰影部分的面積為( 。
A.1.4B.1.6C.2.6D.2.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{6}}}{6}$,焦距為2,O是坐標(biāo)原點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線y=x+m交橢圓C于A、B兩點(diǎn),若以AB為直徑的圓經(jīng)過(guò)O點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案