9.f(x)=ax3-x2+x+2,$g(x)=\frac{elnx}{x}$,?x1∈(0,1],?x2∈(0,1],使得f(x1)≥g(x2),則實(shí)數(shù)a 的取值范圍是[-2,+∞).

分析 求出g(x)的最大值,問(wèn)題轉(zhuǎn)化為ax3-x2+x+2≥0在(0,1]恒成立,即a≥$\frac{{x}^{2}-x-2}{{x}^{3}}$在(0,1]恒成立,令h(x)=$\frac{{x}^{2}-x-2}{{x}^{3}}$,x∈(0,1],根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:g′(x)=$\frac{e(1-lnx)}{{x}^{2}}$,而x∈(0,1],
故g′(x)>0在(0,1]恒成立,
故g(x)在(0,1]遞增,
g(x)max=g(1)=0,
若?x1∈(0,1],?x2∈(0,1],使得f(x1)≥g(x2),
只需f(x)min≥g(x)max即可;
故ax3-x2+x+2≥0在(0,1]恒成立,
即a≥$\frac{{x}^{2}-x-2}{{x}^{3}}$在(0,1]恒成立,
令h(x)=$\frac{{x}^{2}-x-2}{{x}^{3}}$,x∈(0,1],
h′(x)=$\frac{{-(x-1)}^{2}+7}{{x}^{4}}$>0,
h(x)在(0,1]遞增,
故h(x)max=h(1)=-2,
故a≥-2,
故答案為:[-2,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)n為正整數(shù),f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,計(jì)算得f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,觀察上述結(jié)果,按照上面規(guī)律,可以推測(cè)f(1024)>6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圓,則此圓心坐標(biāo)(  )
A.(-2,-4)B.$(-\frac{1}{2},-1)$C.(-2,-4)或$(-\frac{1}{2},-1)$D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知F是拋物線E:y2=4x的焦點(diǎn),過(guò)點(diǎn)F的直線交拋物線E于P,Q兩點(diǎn),線段PQ的中垂線僅交x軸于點(diǎn)M,則使|MF|=λ|PQ|恒成立的實(shí)數(shù)λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)的圖象為C,如下結(jié)論中正確的是①②③.
①圖象C關(guān)于直線x=$\frac{11}{12}$π對(duì)稱;      
②函數(shù)f(x)在區(qū)間(-$\frac{π}{12}$,$\frac{5π}{12}$)內(nèi)是增函數(shù);
③圖象C關(guān)于點(diǎn)($\frac{2π}{3}$,0)對(duì)稱;   
④由y=3sin2x圖象向右平移$\frac{π}{3}$個(gè)單位可以得到圖象C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知拋物線方程為x2=2py,且過(guò)點(diǎn)(1,4),則拋物線的焦點(diǎn)坐標(biāo)為( 。
A.(1,0)B.($\frac{1}{16}$,0)C.(0,$\frac{1}{16}$)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知圓M上一點(diǎn)A(1,-1)關(guān)于直線y=x的對(duì)稱點(diǎn)仍在圓M上,直線x+y-1=0截得圓M的弦長(zhǎng)為$\sqrt{14}$.
(1)求圓M的方程;
(2)設(shè)P是直線x+y+2=0上的動(dòng)點(diǎn),PE、PF是圓M的兩條切線,E、F為切點(diǎn),求四邊形PEMF面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知各項(xiàng)均為正數(shù)的數(shù)列{an},其前n項(xiàng)和為Sn,且Sn,an,$\frac{1}{2}$成等差數(shù)列,則數(shù)列{an}的通項(xiàng)公式為( 。
A.2n-4B.2n-3C.2n-2D.2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.曲線x2+y2=4與曲線${x^2}+\frac{y^2}{9}=1$的交點(diǎn)個(gè)數(shù)是4.

查看答案和解析>>

同步練習(xí)冊(cè)答案