【題目】工廠(chǎng)車(chē)間某部門(mén)有8個(gè)小組,在一次技能考試中成績(jī)情況分析如下:
小組 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
大于90分人數(shù) | 6 | 6 | 7 | 3 | 5 | 3 | 3 | 7 |
不大于90分人數(shù) | 39 | 39 | 38 | 42 | 40 | 42 | 42 | 38 |
(1)求90分以上人數(shù)對(duì)小組序號(hào)的線(xiàn)性回歸方程;
附:回歸方程為,其中,.本題,.
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為7組與8組的成績(jī)是否優(yōu)秀(大于90分)與小組有關(guān)系.附部分臨界值表:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
【答案】(1)(2)能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下不能認(rèn)為7組與8組的成績(jī)是否優(yōu)秀(大于90分)與小組有關(guān)系.
【解析】
根據(jù)題目所給的求線(xiàn)性回歸方程的公式,利用表中內(nèi)容,求出相對(duì)應(yīng)的,結(jié)合題目所給條件,代入公式,求出相對(duì)應(yīng)的,即可求出線(xiàn)性回歸方程。
根據(jù)題意,列出列聯(lián)表,利用獨(dú)立性檢驗(yàn)的公式,求出的值,根據(jù)臨界表值,找出對(duì)應(yīng)的概率值,從而得出結(jié)論。
解:(1),,,,
,
,
所以線(xiàn)性回歸方程為.
(2)由題意知,列聯(lián)表如下:
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
7組 | 3 | 42 | 45 |
8組 | 7 | 38 | 45 |
合計(jì) | 10 | 80 | 90 |
,
因?yàn)?/span>,所以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下不能認(rèn)為7組與8組的成績(jī)是否優(yōu)秀(大于90分)與小組有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加書(shū)法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書(shū)法社團(tuán) | 未參加書(shū)法社團(tuán) | |
參加演講社團(tuán) | ||
未參加演講社團(tuán) |
(1)從該班隨機(jī)選名同學(xué),求該同學(xué)至少參加上述一個(gè)社團(tuán)的概率;
(2)在既參加書(shū)法社團(tuán)又參加演講社團(tuán)的名同學(xué)中,有5名男同學(xué)名女同學(xué)現(xiàn)從這名男同學(xué)和名女同學(xué)中各隨機(jī)選人,求被選中且未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,其左頂點(diǎn)在圓上.
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓上不同于點(diǎn) 的點(diǎn),直線(xiàn)與圓的另一個(gè)交點(diǎn)為.是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形和梯形所在的平面互相垂直,,,.
(1)若為的中點(diǎn),求證:平面;
(2)若,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某貧困地區(qū)有1500戶(hù)居民,其中平原地區(qū)1050戶(hù),山區(qū)450戶(hù).為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實(shí)施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶(hù)家庭2017年年收入的樣本數(shù)據(jù)(單位:萬(wàn)元).
(Ⅰ)應(yīng)收集多少戶(hù)山區(qū)家庭的樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這150個(gè)樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為,,,,,,.如果將頻率視為概率,估計(jì)該地區(qū)2017年家庭收入超過(guò)1.5萬(wàn)元的概率;
(Ⅲ)樣本數(shù)據(jù)中,由5戶(hù)山區(qū)家庭的年收入超過(guò)2萬(wàn)元,請(qǐng)完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,已知直線(xiàn)的參數(shù)方程為(為參數(shù),),曲線(xiàn)的極坐標(biāo)方程為.
(1)若,求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),當(dāng)變化時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),在定義域內(nèi)恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn).
(1)求橢圓的方程,并求其離心率;
(2)過(guò)點(diǎn)作軸的垂線(xiàn),設(shè)點(diǎn)為第四象限內(nèi)一點(diǎn)且在橢圓上(點(diǎn)不在直線(xiàn)上),點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)為,直線(xiàn)與交于另一點(diǎn).設(shè)為原點(diǎn),判斷直線(xiàn)與直線(xiàn)的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com