分析 (I)由${a_n}=\frac{1}{4}{a_{n-1}}-\frac{3}{4}$知:${a_n}+1=\frac{1}{4}({a_{n-1}}+1)$,利用等比數列的通項公式即可得出;
( II)bn=|11-2n|,設數列{11-2n}的前n項和為Tn,則${T_n}=10n-{n^2}$.當n≤5時,Sn=Tn;當n≥6時,Sn=2S5-Tn.
解答 (I)證明:由${a_n}=\frac{1}{4}{a_{n-1}}-\frac{3}{4}$知:${a_n}+1=\frac{1}{4}({a_{n-1}}+1)$,
∴數列{an+1}是以512為首項,$\frac{1}{4}$為公比的等比數列.
則${a_n}+1={2^{11-2n}}$,${a_n}={2^{11-2n}}-1$.
( II)解:bn=|11-2n|,
設數列{11-2n}的前n項和為Tn,則${T_n}=10n-{n^2}$,
當n≤5時,${S_n}={T_n}=10n-{n^2}$;
當n≥6時,${S_n}=2{S_5}-{T_n}={n^2}-10n+50$;
所以${S_n}=\left\{\begin{array}{l}10n-{n^2},n≤5\\{n^2}-10n+50,n≥6\end{array}\right.$.
點評 本題考查了等比數列與等差數列的通項公式及其前n項和公式、分類討論方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $(0,\frac{1}{2})$ | B. | $(\frac{3}{4},+∞)$ | C. | $(\frac{1}{2},+∞)$ | D. | ($\frac{3}{4}$,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $({-∞,2\sqrt{2}})$ | B. | $({-∞,2\sqrt{2}}]$ | C. | $({0,2\sqrt{2}}]$ | D. | $({2\sqrt{2},+∞})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | m=-4 | B. | m≠-4 | C. | m≠1 | D. | m∈R |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x∈R,x2≤x-2 | |
B. | ?x∈R,2x>2-x2 | |
C. | 函數f(x)=$\frac{1}{x}$為定義域上的減函數 | |
D. | “被2整除的整數都是偶數”的否定是“至少存在一個被2整除的整數不是偶數” |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com