4.已知全集U={1,2,3,4,5,6,7,8,9},A={2,3,6,8},B={1,6,8}.
(Ⅰ)求A∪B;(∁UA)∩B;
(Ⅱ)寫(xiě)出集合A∩B的所有子集.

分析 (Ⅰ)由A與B求出兩集合的并集,求出A補(bǔ)集與B的交集即可;
(Ⅱ)求出A與B的交集,確定出交集的子集即可.

解答 解:(Ⅰ)∵全集U={1,2,3,4,5,6,7,8,9},A={2,3,6,8},B={1,6,8},
∴A∪B={1,2,3,6,8};∁UA={1,4,5,7,9},
則(∁UA)∩B={1};
(Ⅱ)∵A={2,3,6,8},B={1,6,8},
∴A∩B={6,8},
則A∩B的所有子集為{6};{8};{6,8};∅.

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.正方體ABCD-A1B1C1D1中,AD1與平面BDD1B1所成的角為30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.過(guò)點(diǎn)A(-4,0)向橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)引兩條切線,切點(diǎn)分別為B、C,若△ABC為正三角形,則當(dāng)ab最大時(shí)橢圓的方程為(  )
A.$\frac{{x}^{2}}{8}$+$\frac{3{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{16}$+$\frac{3{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{9}$+$\frac{4{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$+$\frac{8{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2-2ax+5.
(1)是否存在實(shí)數(shù)a,使f(x)的定義域和值域是[1,a],若存在,求出a,若不存在,說(shuō)明理由;
(2)若f(x)在x∈[0,1]上有零點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)對(duì)任意的x∈[1,a+1],總有|f(x)|≤4,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若定義一種運(yùn)算:(a,b)$(\begin{array}{l}{c}\\qv4hyjk\end{array})$=ac+bd.已知z為復(fù)數(shù),且(1,z)$(\begin{array}{l}{\overline{z}}\\{2}\end{array})$=3+4i,則復(fù)數(shù)z為1+4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.用“二分法”求函數(shù)f(x)=x3-3x+1的一個(gè)零點(diǎn)時(shí),若區(qū)間[1,2]作為計(jì)算的初始區(qū)間,則下一個(gè)區(qū)間應(yīng)取為(1.5,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知$\frac{\overline z}{1+i}$=2+i,則|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)的圖象上存在兩點(diǎn),使得函數(shù)的圖象在這兩點(diǎn)處的切線互相垂直,則稱(chēng)y=f(x)具有T性質(zhì).寫(xiě)出下列函數(shù)中,所有具有T性質(zhì)的函數(shù)序號(hào)是①.
①y=sinx   ②y=lnx  ③y=ex          ④y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.由變量x與y相對(duì)應(yīng)的一組數(shù)據(jù)(3,y1),(5,y2),(7,y3),(12,y4),(13,y5)得到的線性回歸方程為$\stackrel{∧}{y}$=$\frac{1}{2}$x+20,則$\sum_{i=1}^{5}{y}_{i}$=( 。
A.25B.125C.120D.24

查看答案和解析>>

同步練習(xí)冊(cè)答案