某校50名學(xué)生在一次科普知識(shí)競賽中,初賽成績?nèi)拷橛?0與100之間,將初賽成績按如下方式分成四組:第一組[60,70],第二組[70,80],…,第四組[90,100].如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)求成績?cè)赱80,90]范圍內(nèi)的人數(shù);
(Ⅱ)決賽規(guī)則如下:為每位參加決賽的選手準(zhǔn)備4道判斷題,選手對(duì)其依次回答,答對(duì)兩道就終止答題,并獲得一等獎(jiǎng),若題目答完仍然只答對(duì)l道,則獲得二等獎(jiǎng),否則獲得三等獎(jiǎng).某同學(xué)進(jìn)入決賽,每道題答對(duì)的概率p的值恰好與成績不少于80分的頻率值相同.
(i)求該同學(xué)恰好答滿4道題而獲得一等獎(jiǎng)的概率;
(ii)設(shè)該同學(xué)決賽中答題個(gè)數(shù)為X,求X的分布列及X的數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)由成績?cè)赱80,90)范圍內(nèi)的頻率是0.28,能求出成績?cè)赱80,90)范圍內(nèi)的人數(shù).
(Ⅱ)(i)由已知條件求出p=0.4.該同學(xué)恰好答滿4道題而獲得一等獎(jiǎng),即前3道題中剛好答對(duì)1道,第4道也能夠答對(duì)才獲得一等獎(jiǎng),由此能求出結(jié)果.
(ii)由題設(shè)可知,該同學(xué)答題個(gè)數(shù)為2、3、4.即X=2、3、4,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
解答: 解:(Ⅰ)由已知得成績?cè)赱80,90)范圍內(nèi)的頻率是0.28   …(2分)
則成績?cè)赱80,90)范圍內(nèi)的人數(shù)是0.28×50=14人…(3分)
(Ⅱ)∵成績?cè)赱80,90)范圍內(nèi)的頻率是0.28,在[90,100)范圍內(nèi)的頻率是0.12,
∴p=0.28+0.12=0.4.…(5分)
(i)該同學(xué)恰好答滿4道題而獲得一等獎(jiǎng),即前3道題中剛好答對(duì)1道,
第4道也能夠答對(duì)才獲得一等獎(jiǎng),
則有
C
1
3
×0.4×0.62×0.4
=0.1728.
∴該同學(xué)恰好答滿4道題而獲得一等獎(jiǎng)的概率為0.1728.…(7分)
(ii)由題設(shè)可知,該同學(xué)答題個(gè)數(shù)為2、3、4.即X=2、3、4,
P(X=2)=0.42=0.16,P(X=3)=
C
1
2
×0.4×0.6×0.4=0.192
,
P(X=4)=
C
1
3
×0.4×0.62+0.63
=0.648.…(11分)
∴X的分布列為:
X 2 3 4
P 0.16 0.192 0.648
E(X)=2×0.16+3×0.192+4×0.648=3.488.…(13分)
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要注意頻率分布直方圖的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=
5
2
,an+1=
5an-8
2an-3
(n∈N*),bn=
1
an-2

(Ⅰ)證明:數(shù)列{bn}為等差數(shù)列;
(Ⅱ)已知cn=bn(-
9
10
n,求數(shù)列{cn}的最大項(xiàng)為第幾項(xiàng);
(Ⅲ)設(shè)Sn為{bn}的前n項(xiàng)和,dn=[
Sn
n+4
],其中[x]為不超過x的最大整數(shù),求數(shù)列{dn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)g(x)=
1
2
x2+1(x>0)
-
1
2
x2-1(x<0)
的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

多面體ABCDEF中,M、N分別為EC、AB的中點(diǎn),底面ABCD為菱形,且∠BAD=
60°,ED⊥平面ABCD,ED∥BF,且ED=AD=2BF=2.
(Ⅰ)求證:MN∥平面BCF;
(Ⅱ)求二面角A-EF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB、PC的中點(diǎn),且PA=AD.
(1)求證:EF∥平面PAD;
(2)求證:面PEC⊥面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四面體ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°.點(diǎn)E在BD上,且DE=
1
3
DB.
(Ⅰ)求證:AB⊥CE;
(Ⅱ)若AC=CE,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,∠ABC=∠BAD=90°AB=AD=2BC,△PAD為正三角形,且平面PAD⊥平面ABCD.

(Ⅰ)證明AD⊥PC
(Ⅱ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)F(0,1)和直線l1:y=-1,過定點(diǎn)F與直線l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)過點(diǎn)F的直線l2交動(dòng)點(diǎn)C的軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求
RP
RQ
的最小值;
(3)過點(diǎn)F且與l2垂直的直線l3交動(dòng)點(diǎn)C的軌跡于兩點(diǎn)R、T,問四邊形PRQT的面積是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c和函數(shù)g(x)=ax2+bx+clnx(a、b、c∈R,abc≠0).
(Ⅰ)若a=c=-1,且函數(shù)g(x)在(0,+∞)遞減,求b的取值范圍;
(Ⅱ)我們知道“對(duì)于函數(shù)f(x)=ax2+bx+c,在其圖象上任意取不同兩點(diǎn)A(x1,y1),B(x2,y2),線段AB中點(diǎn)的橫坐標(biāo)為x0,則直線AB的斜率k=f′(x0)”.
(i)請(qǐng)證明該結(jié)論;
(ii)試探究g(x)=ax2+bx+clnx是否也具有該性質(zhì).

查看答案和解析>>

同步練習(xí)冊(cè)答案