3.設(shè)A,B為橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的兩點(diǎn)且$\overrightarrow{OA}$=λ$\overrightarrow{OB}$,則λ=-1.

分析 由$\overrightarrow{OA}$=λ$\overrightarrow{OB}$,利用向量共線定理可得A,O,B三點(diǎn)共線,再利用橢圓的對(duì)稱性即可得出.

解答 解:∵A,B為橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的兩點(diǎn)且$\overrightarrow{OA}$=λ$\overrightarrow{OB}$,
∴A,O,B三點(diǎn)共線,
因此點(diǎn)A,B關(guān)于點(diǎn)O對(duì)稱,
∴λ=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、向量共線定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ln$\frac{1+x}{1-x}$.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求證:當(dāng)x∈(0,1)時(shí),f(x)>2(x+$\frac{{x}^{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.用配方法解方程x2+4x+1=0,配方后的方程是(  )
A.(x+2)2=3B.(x-2)2=3C.(x-2)2=5D.(x+2)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.對(duì)于橢圓x2-my2=1(|m|<1),給出下列命題:
①焦點(diǎn)在x軸上;
②長(zhǎng)半軸的長(zhǎng)是$\frac{1}{\sqrt{m}}$;
③短半軸的長(zhǎng)是1;
④焦點(diǎn)到中心的距離$\sqrt{-\frac{1+m}{m}}$;
⑤離心率e=$\sqrt{1+m}$.
其中正確命題的序號(hào)是③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{9x}{a{x}^{2}+1}$(a>0).
(1)若a>$\frac{2}{3}$,且曲線y=f(x)在點(diǎn)(2,f(2))處的切線的斜率為-$\frac{27}{25}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當(dāng)x>1時(shí),f(x)>$\frac{9+lnx}{a{x}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)=loga$\frac{1+mx}{1-x}$(a>0,a≠1)是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)求不等式f(x)>0的解集;
(3)當(dāng)a=2時(shí),判斷單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=e2x-alnx,x∈(0,1).
(1)討論函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的零點(diǎn)個(gè)數(shù);
(2)當(dāng)a=1時(shí),證明:f(x)>$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若集合A={x|(k+2)x2+2kx+1=0}有且僅有2個(gè)子集,則滿足條件的實(shí)數(shù)k的個(gè)數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=log2(-x2+2x)的值域是(-∞,0].

查看答案和解析>>

同步練習(xí)冊(cè)答案