從原點(diǎn)向圓x2+y2-12y+27=0作兩條切線,則這兩個(gè)切點(diǎn)之間的距離為
 
考點(diǎn):圓的切線方程
專題:直線與圓
分析:首先把圓的一般方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,進(jìn)一步得到三角形相似,利用勾股定理進(jìn)一步求的結(jié)果.
解答:
解:過O向圓引切線OM,連結(jié)AM,得AM⊥OM,
∵x2+y2-12y+27=0,
∴x2+(y-6)2=9,
即OA=6,AM=3,
根據(jù)△AMN∽△AOM,
AM2=AN•AO,
求得AN=
3
2

在△ANM中利用勾股定理求得:MN=
3
3
2
,
兩切點(diǎn)間的距離為:3
3

故答案為:3
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn):圓的一般方程與標(biāo)準(zhǔn)方程之間的轉(zhuǎn)化,三角形的相似,勾股定理及相關(guān)的運(yùn)算問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
lnx(0<x≤1)
2x+
3
x
(x>1)
,若函數(shù)g(x)=f(x)-kx+k的零點(diǎn)有2個(gè),則k的取值范圍( 。
A、(1,2]
B、(0,1]
C、(1,3]
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:?x∈R,ax2+ax+1≥0,若?p是真命題,則實(shí)數(shù)a的取值范圍是( 。
A、(0,4]
B、[0,4]
C、(-∞,0]∪[4,+∞)
D、(-∞,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正六邊形ABCDEF,邊長(zhǎng)為1,其中心為O.
(1)在A、B、C、D、E、F、0中任取2點(diǎn),作為向量的起點(diǎn)和終點(diǎn),求得到單位向量的概率;
(2)在A、B、C、D、E、F中任取3點(diǎn),求構(gòu)成三角形的面積為
3
4
的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點(diǎn),M為橢圓上的動(dòng)點(diǎn),且
MF1
MF2
的最大值為1,最小值為-2.
(1)求橢圓C的方程;
(2)過點(diǎn)(-
6
5
,0)
作不與y軸垂直的直線l交該橢圓于M,N兩點(diǎn),A為橢圓的左頂點(diǎn).試判斷∠MAN是否為直角,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a=2,b=
6
,B=
π
3
,則sinA的值是( 。
A、
1
2
B、
2
2
C、
3
2
D、
1
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線a,b是異面直線是指
①a∩b=∅,且a與b不平行;    
②a?面α,b?面β,且平面α∩β=∅;
③a?面α,b?面β,且a∩b=∅;
④不存在平面α,能使a?α且b?α成立.
上述結(jié)論正確的有(  )
A、①④B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過點(diǎn)A(0,b),且斜率為1的直線l與圓O:x2+y2=16交于不同的兩點(diǎn)M、N.
(Ⅰ)求實(shí)數(shù)b的取值范圍;
(Ⅱ)若|MN|=4
3
,求實(shí)數(shù)b的值;
(Ⅲ) 記集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面區(qū)域分別為U,V,若在區(qū)域U內(nèi)任取一點(diǎn)M(x,y),求點(diǎn)M落在區(qū)域V的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從一箱產(chǎn)品中隨機(jī)地抽取一件產(chǎn)品,設(shè)事件A:“抽到的是一等品”,事件B:“抽到的是二等品”,事件C:“抽到的是三等品”,其中一等品和二等品為正品,其他均為次品,且已知P(A)=0.7,P(B)=0.1,P(C)=0.05,求下列事件的概率:
(I)事件D:“抽到的是二等品或三等品”;
(Ⅱ)事件E:“抽到的是次品”.

查看答案和解析>>

同步練習(xí)冊(cè)答案