【題目】已知隨機(jī)變量ξ+η=8,若ξ~B(10,0.6),則E(η),D(η)分別是 (  )

A. 6和2.4 B. 2和2.4

C. 2和5.6 D. 6和5.6

【答案】B

【解析】因?yàn)?/span>ξ~B(10,0.6),

所以E(ξ)=10×0.6=6,

D(ξ)=10×0.6×0.4=2.4,

因?yàn)?/span>ξ+η=8,

所以E(η)=E(8-ξ)=2,D(ξ)=D(8-ξ)=2.4. B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,其中是不為1的常數(shù).

)證明:若是遞增數(shù)列,則不可能是等差數(shù)列;

)證明:若是遞減的等比數(shù)列,則中的每一項(xiàng)都大于其后任意個(gè)項(xiàng)的和;

)若,且是遞增數(shù)列,是遞減數(shù)列,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列問題中是古典概型的是( 。
A.種下一粒楊樹種子,求其能長成大樹的概率
B.擲一顆質(zhì)地不均勻的骰子,求出現(xiàn)1點(diǎn)的概率
C.在區(qū)間[1,4]上任取一數(shù),求這個(gè)數(shù)大于1.5的概率
D.同時(shí)擲兩枚質(zhì)地均勻的骰子,求向上的點(diǎn)數(shù)之和是5的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級(jí)的學(xué)生中抽取一個(gè)容量為50的樣本,則應(yīng)從高二年級(jí)抽取名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于用斜二測(cè)畫法畫直觀圖的說法中,正確的是( )
A.水平放置的正方形的直觀圖不可能是平行四邊形
B.平行四邊形的直觀圖仍是平行四邊形
C.兩條相交直線的直觀圖可能是平行直線
D.兩條垂直的直線的直觀圖仍互相垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為實(shí)數(shù),函數(shù)xR.

(1)討論的奇偶性;

(2)若xa,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在區(qū)間上有最大值4,最小值1,設(shè)

(1)求的值;

(2)不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)方程有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形, 上的點(diǎn).

(1)求證:平面平面;

(2)若的中點(diǎn), 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)若不過點(diǎn)的直線交橢圓兩點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案