精英家教網 > 高中數學 > 題目詳情

【題目】某學校高一、高二、高三年級的學生人數之比為3∶3∶4,現用分層抽樣的方法從該校高中三個年級的學生中抽取一個容量為50的樣本,則應從高二年級抽取名學生.

【答案】15
【解析】設應從高二年級抽取x名學生,則x∶50=3∶10,解得x=15.由分層抽樣的特點可以得出答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】圓心在直線x﹣y+2=0上,且與兩坐標軸都相切的圓的方程為(  )

A. (x+1)2+(y﹣1)2=1 B. (x﹣1)2+(y+1)2=1 C. (x﹣1)2+(y+1)2=2 D. (x﹣1)2+(y﹣1)2=1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

1,求函數在區(qū)間上的值域;

2函數在區(qū)間上的最小值大于上的最小值,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】12件同類產品中(其中10件正品,2件次品),任意抽取6件產品,下列說法中正確的是(  )

A. 抽出的6件產品必有5件正品,1件次品

B. 抽出的6件產品中可能有5件正品,1件次品

C. 抽取6件產品時,逐個不放回地抽取,5件是正品,6件必是次品

D. 抽取6件產品時,不可能抽得5件正品,1件次品

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:

月份

1

2

3

利潤

2

3.9

5.5

(1)求利潤關于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預測4月和5月的利潤;

(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過1000萬?

相關公式:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:, 過拋物線C上點M且與M處的切線垂直的直線稱為拋物線C在點M的法線

(1)若拋物線C在點M的法線的斜率為,求點M的坐標;

(2)設P為C對稱軸上的一點,在C上是否存在點,使得C在該點的法線通過點P若有,求出這些點,以及C在這些點的法線方程;若沒有,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知隨機變量ξ+η=8,若ξ~B(10,0.6),則E(η),D(η)分別是 (  )

A. 6和2.4 B. 2和2.4

C. 2和5.6 D. 6和5.6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元在機器使用期間,如果備件不足再購買,則每個500元現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:

以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發(fā)生的概率,記表示2臺機器三年內共需更換的易損零件數,表示購買2臺機器的同時購買的易損零件數

I的分布列;

II若要求,確定的最小值;

III以購買易損零件所需費用的期望值為決策依據,在之中選其一,應選用哪個?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元,根據市場調查,銷售商一次訂購量不會超過500件.

(1)設一次訂購量為件,服裝的實際出廠單價為元,寫出函數的表達式;

(2)當銷售商一次訂購多少件服裝時,該服裝廠獲得的利潤最大?并求出最大值.

查看答案和解析>>

同步練習冊答案