【題目】在平面直角坐標(biāo)系中,已知兩定點(diǎn),,動(dòng)點(diǎn)滿(mǎn)足.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)軌跡上有兩點(diǎn),,它們關(guān)于直線對(duì)稱(chēng),且滿(mǎn)足,求的面積.

【答案】(1)動(dòng)點(diǎn)的軌跡是圓,其方程為(2)

【解析】

1)設(shè)動(dòng)點(diǎn)的坐標(biāo)為表示出化簡(jiǎn)可得.
2)根據(jù)對(duì)稱(chēng),由垂徑定理可得圓心在直線上,即可求出直線的方程,易知垂直于直線,且.設(shè)的中點(diǎn)為,則,計(jì)算可得,,的值,即可求出的面積.

1)設(shè)動(dòng)點(diǎn)的坐標(biāo)為,則.

整理得,故動(dòng)點(diǎn)的軌跡是圓,且方程為.

2)由(1)知?jiǎng)狱c(diǎn)的軌跡是圓心為,半徑的圓,圓上兩點(diǎn),關(guān)于直線對(duì)稱(chēng),由垂徑定理可得圓心在直線上,代入并求得,故直線的方程為.

易知垂直于直線,且.

設(shè)的中點(diǎn)為,則

,又,.

,∴.

易知,故的距離等于,∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知傾斜角為的直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.

1)求拋物線的方程;

2)求過(guò)點(diǎn)且與拋物線的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)消費(fèi)者協(xié)會(huì)為了解本社區(qū)居民網(wǎng)購(gòu)消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額(單位:千元),網(wǎng)購(gòu)次數(shù)和支付方式等進(jìn)行了問(wèn)卷調(diào)査.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購(gòu)消費(fèi)金額均在區(qū)間內(nèi),按,,,,分成6組,其頻率分布直方圖如圖所示.

(1)估計(jì)該社區(qū)居民最近一年來(lái)網(wǎng)購(gòu)消費(fèi)金額的中位數(shù);

(2)將網(wǎng)購(gòu)消費(fèi)金額在20千元以上者稱(chēng)為“網(wǎng)購(gòu)迷”,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為“網(wǎng)購(gòu)迷與性別有關(guān)系”;

合計(jì)

網(wǎng)購(gòu)迷

20

非網(wǎng)購(gòu)迷

45

合計(jì)

100

(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購(gòu)采用的支付方式相互獨(dú)立,兩人網(wǎng)購(gòu)時(shí)間與次數(shù)也互不. 影響.統(tǒng)計(jì)最近一年來(lái)兩人網(wǎng)購(gòu)的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:

網(wǎng)購(gòu)總次數(shù)

支付寶支付次數(shù)

銀行卡支付次數(shù)

微信支付次數(shù)

80

40

16

24

90

60

18

12

將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購(gòu)2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學(xué)期望.

附:觀測(cè)值公式:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率。

(1)求橢圓方程;

(2)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過(guò)定點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,,,點(diǎn),分別為棱,的中點(diǎn).

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體中,是棱的中點(diǎn),是側(cè)面上的動(dòng)點(diǎn),且平面,記的軌跡構(gòu)成的平面為

,使得;

②直線與直線所成角的正切值的取值范圍是

與平面所成銳二面角的正切值為;

④正方體的各個(gè)側(cè)面中,與所成的銳二面角相等的側(cè)面共四個(gè).

其中正確命題的序號(hào)是________.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓周率是一個(gè)在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù),它既常用又神秘,古今中外很多數(shù)學(xué)家曾研究它的計(jì)算方法.下面做一個(gè)游戲:讓大家各自隨意寫(xiě)下兩個(gè)小于1的正數(shù)然后請(qǐng)他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個(gè)銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個(gè)人的結(jié)論記錄下來(lái)就能算出圓周率的近似值.假設(shè)有個(gè)人說(shuō)“能”,而有個(gè)人說(shuō)“不能”,那么應(yīng)用你學(xué)過(guò)的知識(shí)可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn).x軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(Ⅱ)射線與曲線C2交于O,P兩點(diǎn),射線與曲線C1交于點(diǎn)Q,若△OPQ的面積為1,求|OP|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABCA1B1C1中,AA1⊥平面ABC,∠BAC90°,ABBC2,D,E分別為AA1B1C的中點(diǎn).

1)證明:DE⊥平面BCC1B1;

2)若直線BE與平面AA1B1B所成角為30°,求二面角CBDE的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案