【題目】若直線l1:y=x+a和l2:y=x+b將圓(x﹣1)2+(y﹣2)2=8分成長度相同的四段弧,則ab=

【答案】-7
【解析】解:如圖,∵直線l1:y=x+a和l2:y=x+b將圓(x﹣1)2+(y﹣2)2=8分成長度相同的四段弧 ,

∴∠AOB=∠BOC=∠COD=∠AOD= ,OA=OB=OC=OD=r=2 ,

E、F是AB和CD的中點,則OE=OF= = =2.

∴圓心(1,2)到直線l1:y=x+a和l2:y=x+b的距離都是2,

,解得a=1﹣2 ,b=1+2 或a=1+2 ,b=1﹣2

∴ab=(1+2 )(1﹣2 )=﹣7.

故答案為:﹣7.

利用點到直線的距離公式求得a,b的值,最終求得ab的值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+2kx﹣4,若對任意x∈R,f(x)﹣|x+1|﹣|x﹣1|≤0恒成立,則實數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2 , |F1F2|=4,P是雙曲線右支上的一點,F(xiàn)2P與y軸交于點A,△APF1的內切圓在邊PF1上的切點為Q,若|PQ|=1,則雙曲線的離心率是(
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(Ⅰ)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內為增函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設函數(shù) ,若在[1,e]上至少存在一點x0 , 使得f(x0)≥g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設x,y滿足條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則 的最小值為(
A.
B.
C.
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:四棱錐P﹣ABCD中,PD=PC,底面ABCD是直角梯形AB⊥BC,AB∥CD,CD=2AB,點M是CD的中點.

(1)求證:AM∥平面PBC;
(2)求證:CD⊥PA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,B(0,2),C(1,0),斜率為 的直線l過點A,且l和以C為圓心的圓相切.
(1)求圓C的方程;
(2)在圓C上是否存在點P,使得 ,若存在,求出所有的點P的坐標;若不存在說明理由;
(3)若不過C的直線m與圓C交于M,N兩點,且滿足CM,MN,CN的斜率依次為等比數(shù)列,求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在2017年初的時候,國家政府工作報告明確提出,2017年要堅決打好藍天保衛(wèi)戰(zhàn),加快解決燃煤污染問題,全面實施散煤綜合治理.實施煤改電工程后,某縣城的近六個月的月用煤量逐漸減少,6月至11月的用煤量如下表所示:

(1)由于某些原因, 中一個數(shù)據(jù)丟失,但根據(jù)6至9月份的數(shù)據(jù)得出少樣本平均值是3.5,求出丟失的數(shù)據(jù);

(2)請根據(jù)6至9月份的數(shù)據(jù),求出關于的線性回歸方程;

(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計數(shù)據(jù)與10月11月的實際數(shù)據(jù)的誤差來判斷該地區(qū)的改造項目是否達到預期,若誤差均不超過0.3,則認為該地區(qū)的改造已經達到預期,否則認為改造未達預期,請判斷該地區(qū)的煤改電項目是否達預期?(參考公式:線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為x,求x的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案