分析 (1)若x=3在上述不等式的解集中,即x=3,求解關(guān)于k的不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$即可.
(2)根據(jù)不等式與方程的思想求解,移項(xiàng)通分,化簡(jiǎn),利用x=3求解k的值.
解答 解:(1)由題意:x=3時(shí),不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$化簡(jiǎn)為$\frac{5}{k}>1$,即$\frac{5}{k}-1>0$,可得(5-k)k>0,
解得:0<k<5.
∴當(dāng)x=3在上述不等式的解集中,k的取值范圍是(0,5)
(2)不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$化簡(jiǎn)可得$\frac{x+2}{k}>\frac{{k}^{2}+x-3}{{k}^{2}}$(其中k∈R,k≠0).
∵k>1,
可得:$x+2>\frac{{k}^{2}+x-3}{k}$?kx+2k>k2+x-3
不等式的解集是x∈(3,+∞),∴x=3是方程kx+2k=k2+x-3的解.
即3k+2k=k2,
∵k≠0,
∴k=5.
故得若k>1時(shí),不等式的解集是x∈(3,+∞)時(shí)k的值為5.
點(diǎn)評(píng) 本題考查了分式不等式的化簡(jiǎn)和解法,不等式與方程的關(guān)系.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線BE與直線CF共面 | B. | 直線BE與直線AF是異面直線 | ||
C. | 平面BCE⊥平面PAD | D. | 面PAD與面PBC的交線與BC平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “a2>9”是“a>3”的充分不必要條件 | |
B. | 函數(shù)f(x)=x2-x-6的零點(diǎn)是(3,0)或(-2,0) | |
C. | 對(duì)于命題p:?x∈R,使得x2-x-6>0,則¬p:?x∈R,均有x2-x-6≤0 | |
D. | 命題“若x2-x-6=0,則x=3”的否命題為“若x2-x-6=0,則x≠3” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1條 | B. | 2條 | C. | 3條 | D. | 4條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com