已知函數(shù)f(x)在R上滿足
f(x)-f(-x)
=0(λ≠0),且對任意的實數(shù)x1≠x2(x1>0,x2>0)時,有
f(x1)-f(x2)
x1-x2
>0成立,如果實數(shù)t滿足f(lnt)-f(1)≤f(1)-f(ln
1
t
),那么t的取值范圍是
 
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)已知條件容易判斷出f(x)是偶函數(shù),且在(0,+∞)上為增函數(shù),再根據(jù)對數(shù)的運算,從而可得到f(lnt)≤f(1),根據(jù)f(x)的奇偶性及單調(diào)性即可得到|lnt|≤1,從而根據(jù)對數(shù)函數(shù)的單調(diào)性解出該不等式即可.
解答: 解:根據(jù)已知條件及偶函數(shù),增函數(shù)的定義可知:
f(x)是偶函數(shù),在(0,+∞)上是增函數(shù);
∴由f(lnt)-f(1)≤f(1)-f(ln
1
t
)
得:f(lnt)≤f(1);
∴|lnt|≤1,-1≤lnt≤1;
1
e
≤t≤e
;
∴t的取值范圍為[
1
e
,e]

故答案為:[
1
e
,e
].
點評:考查偶函數(shù),增函數(shù)的定義,以及對數(shù)的運算,偶函數(shù)、增函數(shù)的運用,根據(jù)對數(shù)函數(shù)的單調(diào)性解不等式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

高三年上學(xué)期期末考試中,某班級數(shù)學(xué)成績的頻率分布直方圖如圖所示,數(shù)據(jù)分組依次如下:[70,90),[90,110),[100,130),[130,150),估計該班級數(shù)學(xué)成績的平均分等于( 。
A、112B、114
C、116D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)f(x)中,滿足“對任意x1,x2∈(-∞,0),當(dāng)x1<x2時,都有f(x1)<f(x2)”的函數(shù)是( 。
A、f(x)=-x+1
B、f(x)=x2-1
C、f(x)=2x
D、f(x)=ln(-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式an=
n2
n2+1

(1)0.98是否為它的項?
(2)判斷此數(shù)列的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.
(1)求證方程f(x)=g(x)有兩個不同的實根;
(2)設(shè)方程f(x)=g(x)的兩實根為x1,x2求|x1-x2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
8
3
B、8
C、
10
3
D、
1
3
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)叫做單位分?jǐn)?shù).我們可以把1拆分為無窮多個不同的單位分?jǐn)?shù)之和.例如:1=
1
2
+
1
3
+
1
6
,1=
1
2
+
1
4
+
1
6
+
1
12
,1=
1
2
+
1
5
+
1
6
+
1
12
+
1
20
,…依此方法可得:1=
1
2
+
1
6
+
1
12
+
1
m
+
1
n
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90
+
1
110
+
1
132
+
1
156
,其中m,n∈N*,則m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐ABCD-A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,頂角D1在底面ABCD內(nèi)的射影恰好為點C.
(1)求證:AD1⊥BC;
(2)在AB上是否存在點M,使得C1M∥平面ADD1A1?若存在,確定點M的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中是偶函數(shù)的是( 。
A、y=sinx
B、y=tanx
C、y=cosx
D、y=cos(x-1)

查看答案和解析>>

同步練習(xí)冊答案