【題目】為了讓學(xué)生了解環(huán)保知識,增強環(huán)保意識,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有800名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 6 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 15 | |
80.5~90.5 | 24 | 0.32 |
90.5~100.5 | ||
合計 | 75 | 1.00 |
(1)填充頻率分布表的空格;
(2)補全頻率分布直方圖;
(3)根據(jù)頻率分布直方圖求此次“環(huán)保知識競賽”的平均分為多少?
【答案】
(1)解:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 6 | 0.08 |
60.5~70.5 | 12 | 0.16 |
70.5~80.5 | 15 | 0.20 |
80.5~90.5 | 24 | 0.32 |
90.5~100.5 | 18 | 0.24 |
合計 | 75 | 1.00 |
(2)解:如圖所示:
(3)解:
∴此次“環(huán)保知識競賽”的平均分為80.30(分)
【解析】(1)根據(jù)頻率= ,分別計算即可,(2)由統(tǒng)計表補全直方圖即可,(3)利用組中值乘以對應(yīng)的頻率即可估計環(huán)保知識競賽”的平均分.
【考點精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息,以及對平均數(shù)、中位數(shù)、眾數(shù)的理解,了解⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(1+x)﹣log2(1﹣x),g(x)=log2(1+x)+log2(1﹣x).
(1)判斷函數(shù)f(x)奇偶性并證明;
(2)判斷函數(shù)f(x)單調(diào)性并用單調(diào)性定義證明;
(3)求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
設(shè)函數(shù)f(x)=alnx﹣bx2(x>0).
(1)若函數(shù)f(x)在x=1處于直線相切,求函數(shù)f(x)在上的最大值;
(2)當(dāng)b=0時,若不等式f(x)≥m+x對所有的a∈[1,],x∈[1,e2]都成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)吉利公司生產(chǎn)的“遠(yuǎn)景”、“金剛”、“自由艦”三種型號的轎車產(chǎn)量分別是1600輛、6000輛和2000輛,為檢驗公司的產(chǎn)品質(zhì)量,現(xiàn)從這三種型號的轎車中抽取48輛進行檢驗,這三種型號的轎車依次應(yīng)抽。 )
A.16,16,16
B.8,30,10
C.4,33,11
D.12,27,9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)在高一年級的5次考試中,數(shù)學(xué)成績統(tǒng)計如莖葉圖所示,若甲、乙兩人的平均成績分別是 ,則下列敘述正確的是( )
A. > ,乙比甲成績穩(wěn)定
B. > ,甲比乙成績穩(wěn)定
C. < ,乙比甲成績穩(wěn)定
D. < ,甲比乙成績穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的角A、B、C所對的邊分別是a、b、c,設(shè)向量 , , .
(1)若 ∥ ,求證:△ABC為等腰三角形;
(2)若 ⊥ ,邊長c=2,角C= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的兩個頂點分別為和,兩個焦點分別為和(),過點的直線與橢圓相交于另一點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線上有一點()在的外接圓上,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com