【題目】已知函數(shù).()
(Ⅰ)討論的單調性;
(Ⅱ)若恒成立,求的取值范圍.
【答案】(1)見解析(2)
【解析】【試題分析】(1)運用導數(shù)與函數(shù)單調性之間的關系進行分析求解;(2)先將不等式進行等價轉化再運用導數(shù)知識與分類整合思想分析求解:
解:(Ⅰ)定義域是, .
令.
當,即時, 恒成立,即,所以的單調增區(qū)間為;
當時,即或時,方程有兩個不等的實根,
, .
若,由, 得, ,所以在成立,
即,所以的單調增區(qū)間為;
若,由, 得, ,
由得的范圍是,由得的范圍,
即的單調遞增區(qū)間為, 的單調遞減區(qū)間為.
綜上所述,當時, 的單調遞增區(qū)間為
, ,
的單調遞減區(qū)間為;
當時, 的單調遞增區(qū)間為,無遞減區(qū)間.
(Ⅱ)由,得,
即,即,即.
由(Ⅰ)可知當時, 的單調遞增區(qū)間為,又,
所以當時, ,當時, ;
又當時, ,當時, ;
所以,即原不等式成立.
由(Ⅰ)可知當時, 在單調遞增,在單調遞減,
且,得, ,
而,所以與條件矛盾.
綜上所述, 的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的一塊木料中,棱BC平行于面A′C′.
(Ⅰ)要經過面A′C′內的一點P和棱BC將木料鋸開,應怎樣畫線?
(Ⅱ)所畫的線與平面AC是什么位置關系?并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有800名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績進行統(tǒng)計. 請你根據尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 6 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 15 | |
80.5~90.5 | 24 | 0.32 |
90.5~100.5 | ||
合計 | 75 | 1.00 |
(1)填充頻率分布表的空格;
(2)補全頻率分布直方圖;
(3)根據頻率分布直方圖求此次“環(huán)保知識競賽”的平均分為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關系是( )
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的正方形,側面
底面,且, 、分別為、的中點.
(1)求證: 平面;
(2)求證:面平面;
(3)在線段上是否存在點,使得二面角的余弦值為?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一組數(shù)據的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據中的每一個數(shù)據都加上60,得到一組新數(shù)據,則所得新數(shù)據的平均數(shù)和方差分別是( )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高職院校進行自主招生文化素質考試,考試內容為語文、數(shù)學、英語三科,總分為200分.現(xiàn)從上線的考生中隨機抽取20人,將其成績用莖葉圖記錄如下:
男 | 女 | |||||||||||
15 | 6 | |||||||||||
5 | 4 | 16 | 3 | 5 | 8 | |||||||
8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 | ||||
6 | 5 | 18 | 5 | 7 | ||||||||
19 | 2 | 3 |
(Ⅰ)計算上線考生中抽取的男生成績的方差;(結果精確到小數(shù)點后一位)
(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會,求所選考生恰為一男一女的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】六個面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于( )
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.4(AB2+AD2)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com