【題目】已知函數(shù).()

(Ⅰ)討論的單調性;

(Ⅱ)若恒成立,求的取值范圍.

【答案】(1)見解析(2)

【解析】試題分析】(1)運用導數(shù)與函數(shù)單調性之間的關系進行分析求解;(2)先將不等式進行等價轉化再運用導數(shù)知識與分類整合思想分析求解:

解:(Ⅰ)定義域是,

,即時, 恒成立,即,所以的單調增區(qū)間為;

時,即時,方程有兩個不等的實根,

,

,由 得, ,所以成立,

,所以的單調增區(qū)間為;

,由, 得,

的范圍是,由的范圍,

的單調遞增區(qū)間為, 的單調遞減區(qū)間為

綜上所述,當時, 的單調遞增區(qū)間為

, ,

的單調遞減區(qū)間為;

時, 的單調遞增區(qū)間為,無遞減區(qū)間.

(Ⅱ)由,得,

,即,即

由(Ⅰ)可知當時, 的單調遞增區(qū)間為,又,

所以當時, ,當時, ;

又當時, ,當時,

所以,即原不等式成立.

由(Ⅰ)可知當時, 單調遞增,在單調遞減,

,得, ,

,所以與條件矛盾.

綜上所述, 的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的一塊木料中,棱BC平行于面A′C′.
(Ⅰ)要經過面A′C′內的一點P和棱BC將木料鋸開,應怎樣畫線?
(Ⅱ)所畫的線與平面AC是什么位置關系?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有800名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績進行統(tǒng)計. 請你根據尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:

分組

頻數(shù)

頻率

50.5~60.5

6

0.08

60.5~70.5

0.16

70.5~80.5

15

80.5~90.5

24

0.32

90.5~100.5

合計

75

1.00


(1)填充頻率分布表的空格;
(2)補全頻率分布直方圖;
(3)根據頻率分布直方圖求此次“環(huán)保知識競賽”的平均分為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 , 為不共共線的非零向量,且| |=| |=1,則以下四個向量中模最大者為(
A. +
B. +
C. +
D. +

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關系是(
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側面

底面,且, 分別為、的中點.

1)求證: 平面;

2)求證:面平面;

3)在線段上是否存在點,使得二面角的余弦值為?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一組數(shù)據的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據中的每一個數(shù)據都加上60,得到一組新數(shù)據,則所得新數(shù)據的平均數(shù)和方差分別是(
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高職院校進行自主招生文化素質考試,考試內容為語文、數(shù)學、英語三科,總分為200分.現(xiàn)從上線的考生中隨機抽取20人,將其成績用莖葉圖記錄如下:

td style="width:16.2pt; padding:3.75pt 5.4pt; vertical-align:middle">

15

6

5

4

16

3

5

8

8

2

17

2

3

6

8

8

8

6

5

18

5

7

19

2

3

(Ⅰ)計算上線考生中抽取的男生成績的方差;(結果精確到小數(shù)點后一位)

(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會,求所選考生恰為一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】六個面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于(
A.2(AB2+AD2+AA12
B.3(AB2+AD2+AA12
C.4(AB2+AD2+AA12
D.4(AB2+AD2

查看答案和解析>>

同步練習冊答案