【題目】2018年11月6日-11日,第十二屆中國國際航空航天博覽會在珠海舉行。在航展期間,從珠海市區(qū)開車前往航展地有甲、乙兩條路線可走,已知每輛車走路線甲堵車的概率為,走路線乙堵車的概率為p,若現(xiàn)在有A,B兩輛汽車走路線甲,有一輛汽車C走路線乙,且這三輛車是否堵車相互之間沒有影響。
(1)若這三輛汽車中恰有一輛汽車被堵的概率為,求p的值。
(2)在(1)的條件下,求這三輛汽車中被堵車輛的輛數(shù)X的分布列和數(shù)學期望。
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當時,證明:對一切的,都有恒成立;
(Ⅲ)當時,函數(shù),有最小值,記的最小值為,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線的兩條漸近線分別為.為坐標原點,動直線分別交直線于兩點(分別在第一四象限),且的面積恒為8.試探究:是否存在總與直線有且只有一個公共點的雙曲線?若存在,求出雙曲線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種常見疾病可分為Ⅰ、Ⅱ兩種類型.為了解該疾病類型與地域、初次患該疾病的年齡(以下簡稱初次患病年齡)的關系,在甲、乙兩個地區(qū)隨機抽取100名患者調查其疾病類型及初次患病年齡,得到如下數(shù)據(jù):
(1)從Ⅰ型疾病患者中隨機抽取1人,估計其初次患病年齡小于40歲的概率;
(2)記“初次患病年齡在的患者為“低齡患者”,初次患病年齡在的患者為“高齡患者”,根據(jù)表中數(shù)據(jù),解決以下問題:
將以下兩個列聯(lián)表補充完整,并判斷“地域”“初次患病年齡”這兩個變量中哪個變量與該疾病的類型有關聯(lián)的可能性更大.(直接寫出結論,不必說明理由)
(ii)記(i)中與該疾病的類型有關聯(lián)的可能性更大的變量為,問:是否有99.9%的把握認為“該疾病的類型與有關?”
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) f(x)=ax+(1﹣a)lnx+(a∈R)
(Ⅰ)當a=0時,求 f(x)的極值;
(Ⅱ)當a<0時,求 f(x)的單調區(qū)間;
(Ⅲ)方程 f(x)=0的根的個數(shù)能否達到3,若能請求出此時a的范圍,若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:如果數(shù)列的任意連續(xù)三項均能構成一個三角形的三邊長,則稱為“三角形”數(shù)列,對于“三角形”數(shù)列,如果函數(shù)使得仍為一個“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”.
(1)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列的首項為2010,是數(shù)列的前n項和,且滿足,證明是“三角形”數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的普通方程為,以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(I)求的參數(shù)方程與的直角坐標方程;
(II)射線與交于異于極點的點,與的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐P﹣ABC中,AB=1,BC=2,AC,PC,PA,PB,E是線段BC的中點.
(1)求點C到平面APE的距離d;
(2)求二面角P﹣EA﹣B的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com