【題目】如圖,已知雙曲線的兩條漸近線分別為.為坐標(biāo)原點,動直線分別交直線于兩點(分別在第一四象限),且的面積恒為8.試探究:是否存在總與直線有且只有一個公共點的雙曲線?若存在,求出雙曲線的方程;若不存在,請說明理由.
【答案】存在,雙曲線的方程為:
【解析】
當(dāng)軸時,利用三角形面積公式,結(jié)合題意求出雙曲線的方程,再利用一元二次方程根與系數(shù)的關(guān)系,結(jié)合三角形面積公式,證明當(dāng)直線與軸不垂直時,該雙曲線也滿足條件即可.
設(shè)雙曲線的方程為,設(shè)直線與軸相交于點.
當(dāng)軸時,若直線與雙曲線有且只有個公共點,則.又因為的面積為8,所以,因此,解得,
雙曲線的一條漸近線方程為:,即,
此時雙曲線的方程為.
若存在滿足條件的雙曲線,則的方程只能為.
以下證明:當(dāng)直線與軸不垂直時,雙曲線也滿足條件.
設(shè)直線的方程為,依題意,得或,則,
記.得,同理得.由,
得,即,
由得.因為,
所以.又因為,所以,即與雙曲線有且只有一個公共點.
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線方程;
(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)曲線,是否相交?若相交,請求出公共弦長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點.
(1)如果直線過拋物線的焦點,求的值;
(2)如果,證明直線必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年11月6日-11日,第十二屆中國國際航空航天博覽會在珠海舉行。在航展期間,從珠海市區(qū)開車前往航展地有甲、乙兩條路線可走,已知每輛車走路線甲堵車的概率為,走路線乙堵車的概率為p,若現(xiàn)在有A,B兩輛汽車走路線甲,有一輛汽車C走路線乙,且這三輛車是否堵車相互之間沒有影響。
(1)若這三輛汽車中恰有一輛汽車被堵的概率為,求p的值。
(2)在(1)的條件下,求這三輛汽車中被堵車輛的輛數(shù)X的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年9月支付寶宣布在肯德基的KPRO餐廳上線刷臉支付,也即用戶可以不用手機(jī),單單通過刷臉就可以完成支付寶支付,這也是刷臉支付在全球范圍內(nèi)的首次商用試點.某市隨機(jī)抽查了每月用支付寶消費金額不超過3000元的男女顧客各300人,調(diào)查了他們的支付寶使用情況,得到如下頻率分布直方圖:
若每月利用支付寶支付金額超過2千元的顧客被稱為“支付寶達(dá)人”, 利用支付寶支付金額不超過2千元的顧客稱為“非支付寶達(dá)人”.
(I)若抽取的“支付寶達(dá)人”中女性占120人,請根據(jù)條件完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為“支付寶達(dá)人”與性別有關(guān).
(II)支付寶公司為了進(jìn)一步了解這600人的支付寶使用體驗情況和建議,從“非支付寶達(dá)人” “支付寶達(dá)人”中用分層抽樣的方法抽取8人.若需從這8人中隨機(jī)選取2人進(jìn)行問卷調(diào)查,求至少有1人是“支付寶達(dá)人”的概率.
附:參考公式與參考數(shù)據(jù)如下
,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com