考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:由題意,令f(x)=
-
,從而求導(dǎo)f′(x)=
-
=
xln2x-(x-1)2 |
(x-1)2x(lnx)2 |
;再令g(x)=xln
2x-(x-1)
2并求導(dǎo)g′(x)=ln
2x+2lnx-2(x-1);g″(x)=
;再令h(x)=2lnx-2x+2并求導(dǎo)h′(x)=
-2;從而由導(dǎo)數(shù)的正負確定函數(shù)的單調(diào)性;再求
(
-
)=
=
=
=
;從而求a最小值.
解答:
解:由題意,令f(x)=
-
,
f′(x)=
-
=
xln2x-(x-1)2 |
(x-1)2x(lnx)2 |
;
令g(x)=xln
2x-(x-1)
2,
g′(x)=ln
2x+2lnx-2(x-1);
g″(x)=
;
令h(x)=2lnx-2x+2;
故h′(x)=
-2;
∵x∈(1,2],
∴
-2<0;
故h(x)在(1,2]上是減函數(shù),
故h(x)<h(1)=0-2+2=0;
故g″(x)<0;
故g′(x)=ln
2x+2lnx-2(x-1)在(1,2]上是減函數(shù);
故g′(x)<0+0-2(1-1)=0;
故g(x)=xln
2x-(x-1)
2在(1,2]上是減函數(shù);
故g(x)<g(1)=0;
故f′(x)<0;
故f(x)=
-
在(1,2]上是減函數(shù);
又∵
(
-
)
=
=
=
=
;
故a≥
;
故a最小值為
.
點評:本題考查了導(dǎo)數(shù)的綜合應(yīng)用及恒成立問題,通過不斷求導(dǎo)確定函數(shù)的單調(diào)性,屬于中檔題.