【題目】已知函數(shù)f(x)=x2+1,g(x)=4x+1,的定義域都是集合A,函數(shù)f(x)和g(x)的值域分別為S和T,
(1)若A=[1,2],求S∩T
(2)若A=[0,m]且S=T,求實(shí)數(shù)m的值
(3)若對(duì)于集合A的任意一個(gè)數(shù)x的值都有f(x)=g(x),求集合A.
【答案】(1)S∩T={5}.(2)m=4(3){0],或{4}或{0,4}.
【解析】
(1)根據(jù)定義域,求得兩個(gè)函數(shù)的值域,再求交集即可;
(2)根據(jù)函數(shù)單調(diào)性,得,解方程即可;
(3)由題意,解方程f(x)=g(x)即可.
(1)若A=[1,2],
則函數(shù)f(x)=x2+1的值域是S=[2,5],
g(x)=4x+1的值域T=[5,9],
∴S∩T={5}.
(2)若A=[0,m],則S=[1,m2+1],T=[1,4m+1],
由S=T得m2+1=4m+1,
解得m=4或m=0(舍去).
故.
(3)若對(duì)于A中的每一個(gè)x值,都有f(x)=g(x),
即x2+1=4x+1,
∴x2=4x,
解得x=4或x=0,
∴滿足題意的集合是{0],或{4}或{0,4}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定,,,所對(duì)的邊分別是,,,在所在平面作直線與的某兩邊相交,沿將折成一個(gè)空間圖形,將由分成的小三角形的不在上的頂點(diǎn)與另一部分的頂點(diǎn)連接,形成一個(gè)三棱錐或四棱錐。問:
(1)當(dāng)時(shí),如何作,并折成何種錐體,才能使所得錐體體積最大?(需詳證)
(2)當(dāng)時(shí),如何作,并折成何種錐體,才能使所得錐體體積最大?(敘述結(jié)果,不要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)是同一函數(shù)的是( )
①與;②與;③與;④與。
A. ①② B. ①③ C. ③④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,并整理得到頻率分布直方圖(如圖所示).
(Ⅰ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù).
(Ⅱ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
點(diǎn)P是曲線C1:(x-2)2+y2=4上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸
建立極坐標(biāo)系,將點(diǎn)P繞極點(diǎn)O逆時(shí)針90得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡為曲線C2.
求曲線C1,C2的極坐標(biāo)方程;
射線= (>0)與曲線C1,C2分別交于A,B兩點(diǎn),定點(diǎn)M(2,0),求MAB的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,PC⊥平面ABCD,PC=2,在四邊形ABCD中,∠B=∠C=90°,AB=4,CD=1,點(diǎn)M在PB上,PB=4PM,PB與平面ABCD成30°的角.
求證:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn)P,過它的左、右焦點(diǎn)分別作直線l1和12.l1交橢圓于A.兩點(diǎn),l2交橢圓于C,D兩點(diǎn), 且
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)求四邊形ACBD的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】游樂場的摩天輪勻速旋轉(zhuǎn),其中心O距地面40.5m,半徑40m.若從最低點(diǎn)處登上座天輪,那么人與地面的距離將隨時(shí)間變化,5min后達(dá)到最高點(diǎn),在你登上摩天輪時(shí)開始計(jì)時(shí),
(1)求出人與地面距離y與時(shí)間t的函數(shù)解析式;
(2)從登上摩天輪到旋轉(zhuǎn)一周過程中,有多長時(shí)間人與地面距離大于20.5m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),且.
(1)定義:對(duì)于函數(shù),若存在,使,則稱是的一個(gè)不動(dòng)點(diǎn);
(i)當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);
(ii)對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(2)求的圖像在x軸上截得的線段長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com