7.已知函數(shù)$f(x)=\frac{x}{{{x^2}+1}}+sinx+1$的最大值為M,最小值為m,則M+m=2.

分析 細(xì)分析可以看出,g(x)=$\frac{x}{{x}^{2}+1}$+sinx是一個(gè)奇函數(shù),則該函數(shù)的最大(。┲导1就是原函數(shù)的最大(。┲,而奇函數(shù)的最大值與最小值互為相反數(shù),所以該題即可獲解.

解答 解:令g(x)=$\frac{x}{{x}^{2}+1}$+sinx,則g(-x)=-g(x),
∴g(x)是奇函數(shù),設(shè)其最大值為M,
則由奇函數(shù)的圖象可知,其最小值為-M,
∴f(x)min=1-M,f(x)max=1+M,
∴f(x)min+f(x)max=2.
故答案為:2.

點(diǎn)評(píng) 此題沒(méi)有按常規(guī)考查函數(shù)的最值的求法,即利用單調(diào)性,而是在將原函數(shù)變形的基礎(chǔ)上,通過(guò)觀察分析將原函數(shù)的最值轉(zhuǎn)化為一個(gè)奇函數(shù)的最大值、最小值的問(wèn)題,由奇函數(shù)的圖象可得,其最大值、最小值互為相反數(shù),所以原函數(shù)的最值之和為2.此題有一定難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=|x+et|+|x-e-t|(t∈R).
(1)當(dāng)x、t都是變量時(shí),求f(x)的最小值;
(2)若f(1)<4,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知${f_n}(x)={a_1}x+{a_2}{x^2}+{a_3}{x^3}+…+{a_n}{x^n}$,且${f_n}(-1)={(-1)^n}•n$,n=1,2,3,…
(Ⅰ)求a1,a2,a3;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)當(dāng)k>7且k∈N*時(shí),證明:對(duì)任意n∈N*都有$\frac{2}{{{a_n}+1}}+\frac{2}{{{a_{n+1}}+1}}+\frac{2}{{{a_{n+2}}+1}}+…+\frac{2}{{{a_{nk-1}}+1}}>\frac{3}{2}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.含有甲、乙、丙的六位同學(xué)站成一排,則甲、乙相鄰且甲、丙兩人中間恰有兩人的站法的種數(shù)為( 。
A.72B.60C.32D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知等差數(shù)列{an}中a1=1,sn為其前n項(xiàng)和,且S4=S9,a4+ak=0,則實(shí)數(shù)k等于( 。
A.3B.6C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知橢圓$\frac{{x}^{2}}{10-m}$+$\frac{{y}^{2}}{m-2}$=1的長(zhǎng)軸在y軸上,若焦距為4,則m=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某企業(yè)為打入國(guó)際市場(chǎng),決定從A、B兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)美元)

項(xiàng)目
類別
年固定
成本
每件產(chǎn)品
成本
每件產(chǎn)品
銷售價(jià)
每年最多可
生產(chǎn)的件數(shù)
A產(chǎn)品20m10200
B產(chǎn)品40818120
其中年固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),c為待定常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì)c∈[6,9]另外,年銷售x件B產(chǎn)品時(shí)需上交0.05x2萬(wàn)美元的特別關(guān)稅.假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷售出去.
(1)寫(xiě)出該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤(rùn)y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系并指明其定義域;
(2)如何投資最合理(可獲得最大年利潤(rùn))?請(qǐng)你做出規(guī)劃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知鈍角△ABC的面積為2$\sqrt{3}$,AB=2,BC=4,則該三角形的外接圓半徑為$\frac{2\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a,b∈R,則“|a|>b”是“a>b”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案