【題目】已知函數(shù)f(x)=|ax﹣1|
(1)若f(x)≤2的解集為[﹣3,1],求實(shí)數(shù)a的值;
(2)若a=1,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤3﹣2m成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:顯然a≠0,當(dāng)a>0時(shí),解集為:[ , ],﹣ , ,無解;
當(dāng)a<0時(shí),解集為:[ ,﹣ ],令﹣ =1, ,解得a=﹣1,
綜上a=﹣1.
(2)解:a=1時(shí),令h(x)=f(2x+1)﹣f(x﹣1)=|2x|﹣|x﹣2|= ,
由此可知,h(x)在(﹣∞,0],上是單調(diào)遞減,
在[0,+∞)上單調(diào)遞增,則x=0時(shí),h(x)取得最小值﹣2,
由題意可知﹣2≤3﹣2m,則實(shí)數(shù)m的取值范圍是(﹣∞, ].
【解析】(1)利用絕對值不等式的解集,列出方程求解即可.(2)利用a=1,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤3﹣2m成立,化簡函數(shù)的解析式,通過函數(shù)的最小值以及函數(shù)的單調(diào)性,列出不等式,求解即可.
【考點(diǎn)精析】關(guān)于本題考查的絕對值不等式的解法,需要了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國共產(chǎn)黨第十九次全國代表大會(huì)于2017年10月24日在北京召開,會(huì)議提出“決勝全面建成小康社會(huì)”.某市積極響應(yīng)開展“脫貧攻堅(jiān)”,為2020年“全面建成小康社會(huì)”貢獻(xiàn)力量.為了解該市農(nóng)村“脫貧攻堅(jiān)“情況,從某縣調(diào)查得到農(nóng)村居民2011年至2017年家庭人均純收入(單位:百元)的數(shù)據(jù)如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年人均純收入(百元) | 41 | 45 | 48 | 56 | 60 | 64 | 71 |
注:小康的標(biāo)準(zhǔn)是農(nóng)村居民家庭年人均純收入達(dá)到8000元.
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)測2020年該縣農(nóng)村居民家庭年人均純收入能否達(dá)到“全面建成小康社會(huì)”的標(biāo)準(zhǔn)?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時(shí),可以額外購買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購買,則每個(gè)500元.現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)同時(shí)購買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.
記表示臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺(tái)機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),表示購機(jī)的同時(shí)購買的易損零件數(shù).
(1)若,求與的函數(shù)解析式;
(2)若要求 “需更換的易損零件數(shù)不大于”的頻率不小于,求的最小值;
(3)假設(shè)這臺(tái)機(jī)器在購機(jī)的同時(shí)每臺(tái)都購買個(gè)易損零件,或每臺(tái)都購買個(gè)易損零件,分別計(jì)算這臺(tái)機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買臺(tái)機(jī)器的同時(shí)應(yīng)購買個(gè)還是個(gè)易損零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2y的焦點(diǎn)為F,過拋物線上一點(diǎn)M作拋物線C的切線l,l交y軸于點(diǎn)N.
(1)判斷△MFN的形狀;
(2)若A,B兩點(diǎn)在拋物線C上,點(diǎn)D(1,1)滿足 + = ,若拋物線C上存在異于A,B的點(diǎn)E,使得經(jīng)過A,B,E三點(diǎn)的圓與拋物線在點(diǎn)E處的有相同的切線,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)的對稱性有如下結(jié)論:對于給定的函數(shù),如果對于任意的都有成立為常數(shù)),則函數(shù)關(guān)于點(diǎn)對稱.
(1)用題設(shè)中的結(jié)論證明:函數(shù)關(guān)于點(diǎn);
(2)若函數(shù)既關(guān)于點(diǎn)對稱,又關(guān)于點(diǎn)對稱,且當(dāng)時(shí),,求:①的值;
②當(dāng)時(shí),的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點(diǎn),當(dāng)時(shí),求的值.
(2)若是直線上的動(dòng)點(diǎn),過作圓的兩條切線,切點(diǎn)為,探究:直線是否過定點(diǎn);
(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)(0<≤10)與銷售價(jià)格(單位:萬元/輛)進(jìn)行整理,得到如下的對應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價(jià) | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)試求關(guān)于的回歸直線方程;
(附:回歸方程中,
(Ⅱ)已知每輛該型號汽車的收購價(jià)格為萬元,根據(jù)(Ⅰ)中所求的回歸方程,
預(yù)測為何值時(shí),小王銷售一輛該型號汽車所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】. (12分)如圖所示,函數(shù)的一段圖象過點(diǎn).
(1)求函數(shù)的表達(dá)式;
(2)將函數(shù)的圖象向右平移個(gè)單位,得函數(shù)的圖象,求函數(shù)的最大值,并求此時(shí)自變量的取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com