【題目】經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車的使用年數(shù)(0<≤10)與銷售價(jià)格(單位:萬元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):

使用年數(shù)

2

4

6

8

10

售價(jià)

16

13

9.5

7

4.5

(Ⅰ)試求關(guān)于的回歸直線方程;

(附:回歸方程

(Ⅱ)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬元,根據(jù)(Ⅰ)中所求的回歸方程,

預(yù)測(cè)為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大.

【答案】(III預(yù)測(cè)當(dāng)時(shí),銷售利潤(rùn)取得最大值

【解析】

試題分析:(I)由表中的數(shù)據(jù),計(jì)算出的值,求出,即可寫出回歸直線方程;(II)寫出利潤(rùn)的函數(shù),利用二次函數(shù)的圖象與性質(zhì),求出當(dāng)時(shí),銷售利潤(rùn)取得最大值

試題解析:(Ⅰ)由已知

解得,

所以回歸直線的方程為

(Ⅱ)z=-1.45x+18.70.05x2-1.75x+17.2

=-0.05x2+0.3x+1.5

=-0.05x-32+1.95

所以預(yù)測(cè)當(dāng)x=3時(shí),銷售利潤(rùn)z取得最大值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以原點(diǎn)為圓心,半徑為的圓 與直線相切.

(1)直線過點(diǎn)截圓所得弦長(zhǎng)為求直線 的方程;

(2)設(shè)圓軸的正半軸的交點(diǎn)為,過點(diǎn)作兩條斜率分別為 的直線交圓兩點(diǎn),且 ,證明:直線恒過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且、.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則二人“心有靈犀”的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|ax﹣1|
(1)若f(x)≤2的解集為[﹣3,1],求實(shí)數(shù)a的值;
(2)若a=1,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤3﹣2m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校夏令營(yíng)有3名男同學(xué)和3名女同學(xué),其年級(jí)情況如下表,現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同).

一年級(jí)

二年級(jí)

三年級(jí)

男同學(xué)

女同學(xué)

(1)用表中字母列舉出所有可能的結(jié)果;

(2)設(shè)為事件“選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù)數(shù)列的前項(xiàng)和為,

(1)求數(shù)列的通項(xiàng)公式;

(2)若且數(shù)列是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍;

(3)若數(shù)列滿足:對(duì)于任意給定的正整數(shù),是否存在使 ?若存在,求的值(只要寫出一組即可);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足.

(1)求的通項(xiàng)公式;

(2)設(shè)等比數(shù)列滿足,問: 與數(shù)列的第幾項(xiàng)相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=
(1)證明方程f(x)=g(x)在區(qū)間(1,2)內(nèi)有且僅有唯一實(shí)根;
(2)記max{a,b}表示a,b兩個(gè)數(shù)中的較大者,方程f(x)=g(x)在區(qū)間(1,2)內(nèi)的實(shí)數(shù)根為x0 , m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)內(nèi)有兩個(gè)不等的實(shí)根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求證:函數(shù)f(x)-g(x)必有零點(diǎn);

(2)設(shè)函數(shù)G(x)=f(x)-g(x)-1

①若函數(shù)G(x)有兩相異零點(diǎn)且上是減函數(shù),求實(shí)數(shù)m的取值范圍。

②是否存在整數(shù)a,b使得的解集恰好為若存在,求出a,b的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案