19.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左頂點(diǎn)與拋物線y2=2px(p>0)的焦點(diǎn)的距離為3,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-1,-1),則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{2}$-$\frac{y^2}{2}$=1B.$\frac{x^2}{4}$-$\frac{y^2}{4}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{2}$-y2=1

分析 設(shè)出雙曲線的左頂點(diǎn)和拋物線的焦點(diǎn),雙曲線的漸近線方程和拋物線的準(zhǔn)線方程,求得p=a=b=2,即可得到所求雙曲線的方程.

解答 解:設(shè)雙曲線的左頂點(diǎn)為(-a,0),
拋物線y2=2px(p>0)的焦點(diǎn)為($\frac{p}{2}$,0),
由題意可得a+$\frac{p}{2}$=3,
雙曲線的漸近線方程為y=$\frac{a}$x,
拋物線的準(zhǔn)線方程為x=-$\frac{p}{2}$,
由題意可得-$\frac{p}{2}$=-1,-$\frac{a}$•$\frac{p}{2}$=-1,
解得p=2,a=2,b=2,
則雙曲線的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{4}$=1.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用拋物線的焦點(diǎn)和準(zhǔn)線,以及雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)橢圓Г:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的右焦點(diǎn)為F(1,0),短軸的一個(gè)端點(diǎn)B到F的距離等于焦距:
(1)求橢圓Г的標(biāo)準(zhǔn)方程;
(2)設(shè)C、D是四條直線x=±a,y=±b所圍成的矩形在第一、第二象限的兩個(gè)頂點(diǎn),P是橢圓Г上任意一點(diǎn),若$\overrightarrow{OP}=m\overrightarrow{OC}+n\overrightarrow{OD}$,求證:m2+n2為定值;
(3)過點(diǎn)F的直線l與橢圓Г交于不同的兩點(diǎn)M、N,且滿足于△BFM與△BFN的面積的比值為2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)P(1,$\frac{3}{2}$),其離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的右頂點(diǎn)為A,直線l交C于兩點(diǎn)M、N(異于點(diǎn)A),若D在MN上,且AD⊥MN,|AD|2=|MD||ND|,證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.用反證法證明命題“設(shè)a,b是實(shí)數(shù),則方程x3+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的反設(shè)是(4)(填序號(hào))
(1)方程x3+ax+b=0恰好有兩個(gè)實(shí)根   (2)方程x3+ax+b=0至多有一個(gè)實(shí)根
(3)方程x3+ax+b=0至多有兩個(gè)實(shí)根   (4)方程x3+ax+b=0沒有實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,則雙曲線的離心率為(  )
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{2}$C.$\frac{1+\sqrt{2}}{2}$D.$\frac{3+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某商場柜臺(tái)銷售某種產(chǎn)品,每件產(chǎn)品的成本為10元,并且每件產(chǎn)品需向該商場交a元(3≤a≤7)的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元(20≤x≤25)時(shí),一天的銷售量為(x-30)2件.
(Ⅰ)求該柜臺(tái)一天的利潤f(x)(元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該柜臺(tái)一天的利潤f(x)最大,并求出f(x)的最大值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左焦點(diǎn)為F1,右焦點(diǎn)F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2垂直平分線交l2于點(diǎn)M.
(1)求點(diǎn)M的軌跡E的方程;
(2)若點(diǎn)A的坐標(biāo)為(2,4),直線l:x=ky+2(k∈R),與曲線E相交于B,C兩點(diǎn),直線AB,AC分別交直線l1于點(diǎn)S、T,試判斷以線段ST為直徑的圓是否恒過兩個(gè)定點(diǎn)?若是,求這兩個(gè)定點(diǎn)的坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x>0}\\{{x}^{2}+1,x≤0}\end{array}\right.$,若存在x1∈(0,+∞),x2∈(-∞,0],使得f(x1)=f(x2),則x1的最小值為( 。
A.log23B.log32C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)U=R,A={x|x<1},B={x|x≥m},若∁UA⊆B,則實(shí)數(shù)m的范圍是m≤1.

查看答案和解析>>

同步練習(xí)冊答案